Fuel Economy and Greenhouse Gas Emissions Labeling for Plug‐In Hybrid Vehicles from a Life Cycle Perspective
Author
Abstract
Suggested Citation
DOI: 10.1111/j.1530-9290.2012.00526.x
Download full text from publisher
Citations
Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
Cited by:
- Lewis, Anne Marie & Kelly, Jarod C. & Keoleian, Gregory A., 2014. "Vehicle lightweighting vs. electrification: Life cycle energy and GHG emissions results for diverse powertrain vehicles," Applied Energy, Elsevier, vol. 126(C), pages 13-20.
- Soares, N. & Martins, A.G. & Carvalho, A.L. & Caldeira, C. & Du, C. & Castanheira, É. & Rodrigues, E. & Oliveira, G. & Pereira, G.I. & Bastos, J. & Ferreira, J.P. & Ribeiro, L.A. & Figueiredo, N.C. & , 2018. "The challenging paradigm of interrelated energy systems towards a more sustainable future," Renewable and Sustainable Energy Reviews, Elsevier, vol. 95(C), pages 171-193.
- Laura C. Aguilar Esteva & Akshat Kasliwal & Michael S. Kinzler & Hyung Chul Kim & Gregory A. Keoleian, 2021. "Circular economy framework for automobiles: Closing energy and material loops," Journal of Industrial Ecology, Yale University, vol. 25(4), pages 877-889, August.
- Hutchinson, Tim & Burgess, Stuart & Herrmann, Guido, 2014. "Current hybrid-electric powertrain architectures: Applying empirical design data to life cycle assessment and whole-life cost analysis," Applied Energy, Elsevier, vol. 119(C), pages 314-329.
- Onat, Nuri Cihat & Kucukvar, Murat & Tatari, Omer, 2015. "Conventional, hybrid, plug-in hybrid or electric vehicles? State-based comparative carbon and energy footprint analysis in the United States," Applied Energy, Elsevier, vol. 150(C), pages 36-49.
- Garcia, Rita & Freire, Fausto, 2017. "A review of fleet-based life-cycle approaches focusing on energy and environmental impacts of vehicles," Renewable and Sustainable Energy Reviews, Elsevier, vol. 79(C), pages 935-945.
- Wolfram, Paul & Wiedmann, Thomas, 2017. "Electrifying Australian transport: Hybrid life cycle analysis of a transition to electric light-duty vehicles and renewable electricity," Applied Energy, Elsevier, vol. 206(C), pages 531-540.
Corrections
All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:bla:inecol:v:16:y:2012:i:5:p:761-773. See general information about how to correct material in RePEc.
If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.
We have no bibliographic references for this item. You can help adding them by using this form .
If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.
For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Wiley Content Delivery (email available below). General contact details of provider: http://www.blackwellpublishing.com/journal.asp?ref=1088-1980 .
Please note that corrections may take a couple of weeks to filter through the various RePEc services.