IDEAS home Printed from https://ideas.repec.org/a/bla/inecol/v15y2011i4p539-549.html
   My bibliography  Save this article

Comparative Life Cycle Assessment of Charcoal, Biogas, and Liquefied Petroleum Gas as Cooking Fuels in Ghana

Author

Listed:
  • George Afrane
  • Augustine Ntiamoah

Abstract

Standard life cycle assessment (LCA) methodology has been used to determine and compare the environmental impacts of three different cooking fuels used in Ghana, namely, charcoal, biogas, and liquefied petroleum gas (LPG). A national policy on the use of cooking fuels would have to look at the environmental, social, and cost implications associated with the fuel types. This study looked at the environmental aspect of using these fuels. The results showed that global warming and human toxicity were the most significant overall environmental impacts associated with them, and charcoal and LPG, respectively, made the largest contribution to these impact categories. LPG, however, gave relatively higher impacts in three other categories of lesser significance—that is, eutrophication, freshwater aquatic ecotoxicity, and terrestrial ecotoxicity potentials. Direct comparison of the results showed that biogas had the lowest impact in five out of the seven categories investigated. Charcoal and LPG had only one lowest score each. From the global warming point of view, however, LPG had a slight overall advantage over the others, and it was also the most favorable at the cooking stage, in terms of its effect on humans.

Suggested Citation

  • George Afrane & Augustine Ntiamoah, 2011. "Comparative Life Cycle Assessment of Charcoal, Biogas, and Liquefied Petroleum Gas as Cooking Fuels in Ghana," Journal of Industrial Ecology, Yale University, vol. 15(4), pages 539-549, August.
  • Handle: RePEc:bla:inecol:v:15:y:2011:i:4:p:539-549
    DOI: 10.1111/j.1530-9290.2011.00350.x
    as

    Download full text from publisher

    File URL: https://doi.org/10.1111/j.1530-9290.2011.00350.x
    Download Restriction: no

    File URL: https://libkey.io/10.1111/j.1530-9290.2011.00350.x?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Chen, Bin & Chen, Shaoqing, 2013. "Life cycle assessment of coupling household biogas production to agricultural industry: A case study of biogas-linked persimmon cultivation and processing system," Energy Policy, Elsevier, vol. 62(C), pages 707-716.
    2. Dieu Linh Hoang & Chris Davis & Henri C. Moll & Sanderine Nonhebel, 2020. "Impacts of biogas production on nitrogen flows on Dutch dairy system: Multiple level assessment of nitrogen indicators within the biogas production chain," Journal of Industrial Ecology, Yale University, vol. 24(3), pages 665-680, June.
    3. Kakran, Shubham & Sidhu, Arpit & Kumar, Ashish & Ben Youssef, Adel & Lohan, Sheenam, 2023. "Hydrogen energy in BRICS-US: A whirl succeeding fuel treasure," Applied Energy, Elsevier, vol. 334(C).
    4. Shaoran Geng & Kevin Christopher Dorling & Tobias Manuel Prenzel & Stefan Albrecht, 2024. "Grill and Chill: A Comprehensive Analysis of the Environmental Impacts of Private Household Barbecuing in Germany," Sustainability, MDPI, vol. 16(3), pages 1-27, January.
    5. Sueli De Fátima de Oliveira Miranda Santos & Cassiano Moro Piekarski & Cássia Maria Lie Ugaya & Danilo Barros Donato & Aldo Braghini Júnior & Antonio Carlos De Francisco & Ana Márcia Macedo Ladeira Ca, 2017. "Life Cycle Analysis of Charcoal Production in Masonry Kilns with and without Carbonization Process Generated Gas Combustion," Sustainability, MDPI, vol. 9(9), pages 1-20, September.
    6. Patel, Sameer & Khandelwal, Anish & Leavey, Anna & Biswas, Pratim, 2016. "A model for cost-benefit analysis of cooking fuel alternatives from a rural Indian household perspective," Renewable and Sustainable Energy Reviews, Elsevier, vol. 56(C), pages 291-302.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:bla:inecol:v:15:y:2011:i:4:p:539-549. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Wiley Content Delivery (email available below). General contact details of provider: http://www.blackwellpublishing.com/journal.asp?ref=1088-1980 .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.