IDEAS home Printed from https://ideas.repec.org/a/bla/finrev/v30y1995i3p469-506.html
   My bibliography  Save this article

Refining the Degree of Earnings Surprise: A Comparison of Statistical and Analysts' Forecasts

Author

Listed:
  • Alexander, John C, Jr

Abstract

This paper compares the relative predictive ability of several statistical models with analysts' forecasts. It is one of the first attempts to forecast quarterly earnings using an autoregressive conditional heteroskedasticity (ARCH) model. ARCH and autoregressive integrated moving average models are found to be superior statistical forecasting alternatives. The most accurate forecasts overall are provided by analysts. Analysts have both a contemporaneous and timing advantage over statistical models. When the sample is screened on those firms that have the largest structural change in the earnings process, the forecast accuracy of the best statistical models is similar to analysts' predictions. Copyright 1995 by MIT Press.

Suggested Citation

  • Alexander, John C, Jr, 1995. "Refining the Degree of Earnings Surprise: A Comparison of Statistical and Analysts' Forecasts," The Financial Review, Eastern Finance Association, vol. 30(3), pages 469-506, August.
  • Handle: RePEc:bla:finrev:v:30:y:1995:i:3:p:469-506
    as

    Download full text from publisher

    To our knowledge, this item is not available for download. To find whether it is available, there are three options:
    1. Check below whether another version of this item is available online.
    2. Check on the provider's web page whether it is in fact available.
    3. Perform a search for a similarly titled item that would be available.

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Seifert, Matthias & Hadida, Allègre L., 2013. "On the relative importance of linear model and human judge(s) in combined forecasting," Organizational Behavior and Human Decision Processes, Elsevier, vol. 120(1), pages 24-36.
    2. Lawrence, Michael & Goodwin, Paul & O'Connor, Marcus & Onkal, Dilek, 2006. "Judgmental forecasting: A review of progress over the last 25 years," International Journal of Forecasting, Elsevier, vol. 22(3), pages 493-518.
    3. Darrat, Ali F & Zhong, Maosen, 2000. "On Testing the Random-Walk Hypothesis: A Model-Comparison Approach," The Financial Review, Eastern Finance Association, vol. 35(3), pages 105-124, August.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:bla:finrev:v:30:y:1995:i:3:p:469-506. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Wiley Content Delivery (email available below). General contact details of provider: https://edirc.repec.org/data/efaaaea.html .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.