IDEAS home Printed from https://ideas.repec.org/a/bla/eufman/v24y2018i5p893-918.html
   My bibliography  Save this article

The effectiveness of asset, liability and equity hedging against catastrophe risk: the cases of winter storms in North America and Europe

Author

Listed:
  • Yang‐Che Wu
  • Ming Jing Yang

Abstract

The winter storms in North America and Europe are responsible for the majority of the insured natural catastrophe losses. This study analyzes the effectiveness of insurers hedging against the winter storm risk in terms of asset (catastrophe derivatives), liability (catastrophe bonds) and equity (catastrophe equity puts) risk management perspectives. The analysis results of the various financial performances show that our suggested hedging strategies are effective based on the long‐term positive profit and the improvement in the insolvency ratios. The conclusions of this study provide the insurers with less volatile premiums and more diversified portfolios under catastrophe risk management.

Suggested Citation

  • Yang‐Che Wu & Ming Jing Yang, 2018. "The effectiveness of asset, liability and equity hedging against catastrophe risk: the cases of winter storms in North America and Europe," European Financial Management, European Financial Management Association, vol. 24(5), pages 893-918, November.
  • Handle: RePEc:bla:eufman:v:24:y:2018:i:5:p:893-918
    DOI: 10.1111/eufm.12143
    as

    Download full text from publisher

    File URL: https://doi.org/10.1111/eufm.12143
    Download Restriction: no

    File URL: https://libkey.io/10.1111/eufm.12143?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    References listed on IDEAS

    as
    1. Anna Chernobai & Krzysztof Burnecki & Svetlozar Rachev & Stefan Trück & Rafał Weron, 2006. "Modelling catastrophe claims with left-truncated severity distributions," Computational Statistics, Springer, vol. 21(3), pages 537-555, December.
    2. Burnecki, Krzysztof & Kukla, Grzegorz & Weron, Rafał, 2000. "Property insurance loss distributions," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 287(1), pages 269-278.
    3. Jaimungal, Sebastian & Wang, Tao, 2006. "Catastrophe options with stochastic interest rates and compound Poisson losses," Insurance: Mathematics and Economics, Elsevier, vol. 38(3), pages 469-483, June.
    4. Wu, Yang-Che, 2015. "Reexamining the feasibility of diversification and transfer instruments on smoothing catastrophe risk," Insurance: Mathematics and Economics, Elsevier, vol. 64(C), pages 54-66.
    5. Karsten Paetzmann & Christine Lippl, 2013. "Accounting for European Insurance M&A Transactions: Fair Value of Insurance Contracts and Duplex IFRS/U.S. GAAP Purchase Accounting," The Geneva Papers on Risk and Insurance - Issues and Practice, Palgrave Macmillan;The Geneva Association, vol. 38(2), pages 332-353, April.
    6. Vaugirard, Victor E., 2003. "Pricing catastrophe bonds by an arbitrage approach," The Quarterly Review of Economics and Finance, Elsevier, vol. 43(1), pages 119-132.
    7. Sebastian von Dahlen & Goetz von Peter, 2012. "Natural catastrohpes and global reinsurance - exploring the linkages," BIS Quarterly Review, Bank for International Settlements, December.
    8. Lin, Shih-Kuei & Chang, Chia-Chien & Powers, Michael R., 2009. "The valuation of contingent capital with catastrophe risks," Insurance: Mathematics and Economics, Elsevier, vol. 45(1), pages 65-73, August.
    9. John C. Cox & Jonathan E. Ingersoll Jr. & Stephen A. Ross, 2005. "A Theory Of The Term Structure Of Interest Rates," World Scientific Book Chapters, in: Sudipto Bhattacharya & George M Constantinides (ed.), Theory Of Valuation, chapter 5, pages 129-164, World Scientific Publishing Co. Pte. Ltd..
    10. E. Michel‐Kerjan & S. Hochrainer‐Stigler & H. Kunreuther & J. Linnerooth‐Bayer & R. Mechler & R. Muir‐Wood & N. Ranger & P. Vaziri & M. Young, 2013. "Catastrophe Risk Models for Evaluating Disaster Risk Reduction Investments in Developing Countries," Risk Analysis, John Wiley & Sons, vol. 33(6), pages 984-999, June.
    11. Wu, Yang-Che & Chung, San-Lin, 2010. "Catastrophe risk management with counterparty risk using alternative instruments," Insurance: Mathematics and Economics, Elsevier, vol. 47(2), pages 234-245, October.
    12. Howard Kunreuther & Erwann Michel-Kerjan & Nicola Ranger, 2013. "Insuring future climate catastrophes," Climatic Change, Springer, vol. 118(2), pages 339-354, May.
    13. Michael R. Powers & Thomas Y. Powers & Siwei Gao, 2012. "Risk Finance for Catastrophe Losses with Pareto‐Calibrated Lévy‐Stable Severities," Risk Analysis, John Wiley & Sons, vol. 32(11), pages 1967-1977, November.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Wu, Yang-Che, 2020. "Equilibrium in natural catastrophe insurance market under disaster-resistant technologies, financial innovations and government interventions," Insurance: Mathematics and Economics, Elsevier, vol. 95(C), pages 116-128.
    2. Carolyn W. Chang & Jack S. K. Chang & Min‐Teh Yu & Yang Zhao, 2020. "Portfolio optimization in the catastrophe space," European Financial Management, European Financial Management Association, vol. 26(5), pages 1414-1448, November.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Wu, Yang-Che, 2015. "Reexamining the feasibility of diversification and transfer instruments on smoothing catastrophe risk," Insurance: Mathematics and Economics, Elsevier, vol. 64(C), pages 54-66.
    2. Jo†Yu Wang & Wen†Lin Wu & Yang†Che Wu & Ming Jing Yang, 2017. "How To Manage Long†term Financial Self†sufficiency of a National Catastrophe Insurance Fund? The Feasibility of Three Bailout Programmes," European Financial Management, European Financial Management Association, vol. 23(5), pages 951-974, October.
    3. Braun, Alexander, 2011. "Pricing catastrophe swaps: A contingent claims approach," Insurance: Mathematics and Economics, Elsevier, vol. 49(3), pages 520-536.
    4. Wang, Guanying & Wang, Xingchun & Shao, Xinjian, 2022. "Exchange options for catastrophe risk management," The North American Journal of Economics and Finance, Elsevier, vol. 59(C).
    5. Burnecki, Krzysztof & Giuricich, Mario Nicoló & Palmowski, Zbigniew, 2019. "Valuation of contingent convertible catastrophe bonds — The case for equity conversion," Insurance: Mathematics and Economics, Elsevier, vol. 88(C), pages 238-254.
    6. Wang, Xingchun, 2016. "Catastrophe equity put options with target variance," Insurance: Mathematics and Economics, Elsevier, vol. 71(C), pages 79-86.
    7. Wang, Xingchun, 2019. "Valuation of new-designed contracts for catastrophe risk management," The North American Journal of Economics and Finance, Elsevier, vol. 50(C).
    8. Yu, Jun, 2015. "Catastrophe options with double compound Poisson processes," Economic Modelling, Elsevier, vol. 50(C), pages 291-297.
    9. Lo, Chien-Ling & Lee, Jin-Ping & Yu, Min-Teh, 2013. "Valuation of insurers’ contingent capital with counterparty risk and price endogeneity," Journal of Banking & Finance, Elsevier, vol. 37(12), pages 5025-5035.
    10. Wang, Xingchun, 2020. "Catastrophe equity put options with floating strike prices," The North American Journal of Economics and Finance, Elsevier, vol. 54(C).
    11. Xingchun Wang, 2016. "The Pricing of Catastrophe Equity Put Options with Default Risk," International Review of Finance, International Review of Finance Ltd., vol. 16(2), pages 181-201, June.
    12. Giuricich, Mario Nicoló & Burnecki, Krzysztof, 2019. "Modelling of left-truncated heavy-tailed data with application to catastrophe bond pricing," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 525(C), pages 498-513.
    13. Ma, Zong-Gang & Ma, Chao-Qun, 2013. "Pricing catastrophe risk bonds: A mixed approximation method," Insurance: Mathematics and Economics, Elsevier, vol. 52(2), pages 243-254.
    14. Ben Ammar, Semir & Braun, Alexander & Eling, Martin, 2015. "Alternative Risk Transfer and Insurance-Linked Securities: Trends, Challenges and New Market Opportunities," I.VW HSG Schriftenreihe, University of St.Gallen, Institute of Insurance Economics (I.VW-HSG), volume 56, number 56.
    15. Härdle, Wolfgang Karl & Burnecki, Krzysztof & Weron, Rafał, 2004. "Simulation of risk processes," Papers 2004,01, Humboldt University of Berlin, Center for Applied Statistics and Economics (CASE).
    16. Kim, Hwa-Sung & Kim, Bara & Kim, Jerim, 2014. "Pricing perpetual American CatEPut options when stock prices are correlated with catastrophe losses," Economic Modelling, Elsevier, vol. 41(C), pages 15-22.
    17. Wu, Yang-Che & Chung, San-Lin, 2010. "Catastrophe risk management with counterparty risk using alternative instruments," Insurance: Mathematics and Economics, Elsevier, vol. 47(2), pages 234-245, October.
    18. Keighley, Tim & Longden, Thomas & Mathew, Supriya & Trück, Stefan, 2014. "Quantifying Catastrophic and Climate Impacted Hazards Based on Local Expert Opinions," Climate Change and Sustainable Development 189171, Fondazione Eni Enrico Mattei (FEEM).
    19. Wu, Yang-Che, 2020. "Equilibrium in natural catastrophe insurance market under disaster-resistant technologies, financial innovations and government interventions," Insurance: Mathematics and Economics, Elsevier, vol. 95(C), pages 116-128.
    20. Lee, Jin-Ping & Yu, Min-Teh, 2007. "Valuation of catastrophe reinsurance with catastrophe bonds," Insurance: Mathematics and Economics, Elsevier, vol. 41(2), pages 264-278, September.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:bla:eufman:v:24:y:2018:i:5:p:893-918. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Wiley Content Delivery (email available below). General contact details of provider: https://edirc.repec.org/data/efmaaea.html .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.