IDEAS home Printed from https://ideas.repec.org/a/bla/biomet/v79y2023i1p358-367.html
   My bibliography  Save this article

Accounting for post‐randomization variables in meta‐analysis: A joint meta‐regression approach

Author

Listed:
  • Qinshu Lian
  • Jing Zhang
  • James S. Hodges
  • Yong Chen
  • Haitao Chu

Abstract

Meta‐regression is widely used in systematic reviews to investigate sources of heterogeneity and the association of study‐level covariates with treatment effectiveness. Existing meta‐regression approaches are successful in adjusting for baseline covariates, which include real study‐level covariates (e.g., publication year) that are invariant within a study and aggregated baseline covariates (e.g., mean age) that differ for each participant but are measured before randomization within a study. However, these methods have several limitations in adjusting for post‐randomization variables. Although post‐randomization variables share a handful of similarities with baseline covariates, they differ in several aspects. First, baseline covariates can be aggregated at the study level presumably because they are assumed to be balanced by the randomization, while post‐randomization variables are not balanced across arms within a study and are commonly aggregated at the arm level. Second, post‐randomization variables may interact dynamically with the primary outcome. Third, unlike baseline covariates, post‐randomization variables are themselves often important outcomes under investigation. In light of these differences, we propose a Bayesian joint meta‐regression approach adjusting for post‐randomization variables. The proposed method simultaneously estimates the treatment effect on the primary outcome and on the post‐randomization variables. It takes into consideration both between‐ and within‐study variability in post‐randomization variables. Studies with missing data in either the primary outcome or the post‐randomization variables are included in the joint model to improve estimation. Our method is evaluated by simulations and a real meta‐analysis of major depression disorder treatments.

Suggested Citation

  • Qinshu Lian & Jing Zhang & James S. Hodges & Yong Chen & Haitao Chu, 2023. "Accounting for post‐randomization variables in meta‐analysis: A joint meta‐regression approach," Biometrics, The International Biometric Society, vol. 79(1), pages 358-367, March.
  • Handle: RePEc:bla:biomet:v:79:y:2023:i:1:p:358-367
    DOI: 10.1111/biom.13573
    as

    Download full text from publisher

    File URL: https://doi.org/10.1111/biom.13573
    Download Restriction: no

    File URL: https://libkey.io/10.1111/biom.13573?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    References listed on IDEAS

    as
    1. Lewandowski, Daniel & Kurowicka, Dorota & Joe, Harry, 2009. "Generating random correlation matrices based on vines and extended onion method," Journal of Multivariate Analysis, Elsevier, vol. 100(9), pages 1989-2001, October.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Benjamin Poignard & Jean-David Fermanian, 2016. "Vine-GARCH process: Stationarity and Asymptotic Properties," Working Papers 2016-03, Center for Research in Economics and Statistics.
    2. Medina-Olivares, Victor & Calabrese, Raffaella & Crook, Jonathan & Lindgren, Finn, 2023. "Joint models for longitudinal and discrete survival data in credit scoring," European Journal of Operational Research, Elsevier, vol. 307(3), pages 1457-1473.
    3. Duncan J. Mayer & Robert L. Fischer, 2022. "Can a measurement error perspective improve estimation in neighborhood effects research? A hierarchical Bayesian methodology," Social Science Quarterly, Southwestern Social Science Association, vol. 103(5), pages 1260-1272, September.
    4. Rossetti, Tomás & Daziano, Ricardo A., 2024. "Crowding multipliers on shared transportation in New York City: The effects of COVID-19 and implications for a sustainable future," Transport Policy, Elsevier, vol. 145(C), pages 224-236.
    5. Batram, Manuel & Bauer, Dietmar, 2019. "On consistency of the MACML approach to discrete choice modelling," Journal of choice modelling, Elsevier, vol. 30(C), pages 1-16.
    6. Akinc, Deniz & Vandebroek, Martina, 2018. "Bayesian estimation of mixed logit models: Selecting an appropriate prior for the covariance matrix," Journal of choice modelling, Elsevier, vol. 29(C), pages 133-151.
    7. Zhang, Yixiao & Yu, Cindy L. & Li, Haitao, 2022. "Nowcasting GDP Using Dynamic Factor Model with Unknown Number of Factors and Stochastic Volatility: A Bayesian Approach," Econometrics and Statistics, Elsevier, vol. 24(C), pages 75-93.
    8. Alejandro Plastina & Sergio H. Lence & Ariel Ortiz‐Bobea, 2021. "How weather affects the decomposition of total factor productivity in U.S. agriculture," Agricultural Economics, International Association of Agricultural Economists, vol. 52(2), pages 215-234, March.
    9. Matthias Breuer & Harm H. Schütt, 2023. "Accounting for uncertainty: an application of Bayesian methods to accruals models," Review of Accounting Studies, Springer, vol. 28(2), pages 726-768, June.
    10. Zhongwei Zhang & Reinaldo B. Arellano‐Valle & Marc G. Genton & Raphaël Huser, 2023. "Tractable Bayes of skew‐elliptical link models for correlated binary data," Biometrics, The International Biometric Society, vol. 79(3), pages 1788-1800, September.
    11. Dellaportas, Petros & Titsias, Michalis K. & Petrova, Katerina & Plataniotis, Anastasios, 2023. "Scalable inference for a full multivariate stochastic volatility model," Journal of Econometrics, Elsevier, vol. 232(2), pages 501-520.
    12. Flórez, Alvaro J. & Molenberghs, Geert & Van der Elst, Wim & Alonso Abad, Ariel, 2022. "An efficient algorithm to assess multivariate surrogate endpoints in a causal inference framework," Computational Statistics & Data Analysis, Elsevier, vol. 172(C).
    13. Giuseppe Brandi & Ruggero Gramatica & Tiziana Di Matteo, 2019. "Unveil stock correlation via a new tensor-based decomposition method," Papers 1911.06126, arXiv.org, revised Apr 2020.
    14. Steffen Jahn & Daniel Guhl & Ainslee Erhard, 2024. "Substitution Patterns and Price Response for Plant-Based Meat Alternatives," Rationality and Competition Discussion Paper Series 509, CRC TRR 190 Rationality and Competition.
    15. Andrew Y. Chen & Jack McCoy, 2022. "Missing Values Handling for Machine Learning Portfolios," Papers 2207.13071, arXiv.org, revised Jan 2024.
    16. Gregory Benton & Wesley J. Maddox & Andrew Gordon Wilson, 2022. "Volatility Based Kernels and Moving Average Means for Accurate Forecasting with Gaussian Processes," Papers 2207.06544, arXiv.org.
    17. Davide Delle Monache & Ivan Petrella & Fabrizio Venditti, 2021. "Price Dividend Ratio and Long-Run Stock Returns: A Score-Driven State Space Model," Journal of Business & Economic Statistics, Taylor & Francis Journals, vol. 39(4), pages 1054-1065, October.
    18. Juho Kettunen & Lauri Mehtätalo & Eeva‐Stiina Tuittila & Aino Korrensalo & Jarno Vanhatalo, 2024. "Joint species distribution modeling with competition for space," Environmetrics, John Wiley & Sons, Ltd., vol. 35(2), March.
    19. Guowen Huang & Patrick E. Brown & Sze Hang Fu & Hwashin Hyun Shin, 2022. "Daily mortality/morbidity and air quality: Using multivariate time series with seasonally varying covariances," Journal of the Royal Statistical Society Series C, Royal Statistical Society, vol. 71(1), pages 148-174, January.
    20. Akshay Vij & Rico Krueger, 2018. "Random taste heterogeneity in discrete choice models: Flexible nonparametric finite mixture distributions," Papers 1802.02299, arXiv.org.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:bla:biomet:v:79:y:2023:i:1:p:358-367. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Wiley Content Delivery (email available below). General contact details of provider: http://www.blackwellpublishing.com/journal.asp?ref=0006-341X .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.