Efficient odds ratio estimation under two‐phase sampling using error‐prone data from a multi‐national HIV research cohort
Author
Abstract
Suggested Citation
DOI: 10.1111/biom.13512
Download full text from publisher
References listed on IDEAS
- Ran Tao & Donglin Zeng & Dan-Yu Lin, 2017. "Efficient Semiparametric Inference Under Two-Phase Sampling, With Applications to Genetic Association Studies," Journal of the American Statistical Association, Taylor & Francis Journals, vol. 112(520), pages 1468-1476, October.
- Thomas Lumley & Pamela A. Shaw & James Y. Dai, 2011. "Connections between Survey Calibration Estimators and Semiparametric Models for Incomplete Data," International Statistical Review, International Statistical Institute, vol. 79(2), pages 200-220, August.
- Abhra Sarkar & Bani K. Mallick & Raymond J. Carroll, 2014. "Bayesian semiparametric regression in the presence of conditionally heteroscedastic measurement and regression errors," Biometrics, The International Biometric Society, vol. 70(4), pages 823-834, December.
- Staudenmayer, John & Ruppert, David & Buonaccorsi, John P., 2008. "Density Estimation in the Presence of Heteroscedastic Measurement Error," Journal of the American Statistical Association, American Statistical Association, vol. 103, pages 726-736, June.
- Koehler, Elizabeth & Brown, Elizabeth & Haneuse, Sebastien J.-P. A., 2009. "On the Assessment of Monte Carlo Error in Simulation-Based Statistical Analyses," The American Statistician, American Statistical Association, vol. 63(2), pages 155-162.
Most related items
These are the items that most often cite the same works as this one and are cited by the same works as this one.- Gustavo Amorim & Ran Tao & Sarah Lotspeich & Pamela A. Shaw & Thomas Lumley & Bryan E. Shepherd, 2021. "Two‐phase sampling designs for data validation in settings with covariate measurement error and continuous outcome," Journal of the Royal Statistical Society Series A, Royal Statistical Society, vol. 184(4), pages 1368-1389, October.
- Li, Mengyan & Ma, Yanyuan & Li, Runze, 2019. "Semiparametric regression for measurement error model with heteroscedastic error," Journal of Multivariate Analysis, Elsevier, vol. 171(C), pages 320-338.
- Brady Ryan & Ananthika Nirmalkanna & Candemir Cigsar & Yildiz E. Yilmaz, 2023. "Evaluation of Designs and Estimation Methods Under Response-Dependent Two-Phase Sampling for Genetic Association Studies," Statistics in Biosciences, Springer;International Chinese Statistical Association, vol. 15(2), pages 510-539, July.
- Delaigle, Aurore & Fan, Jianqing & Carroll, Raymond J., 2009. "A Design-Adaptive Local Polynomial Estimator for the Errors-in-Variables Problem," Journal of the American Statistical Association, American Statistical Association, vol. 104(485), pages 348-359.
- Luo, Nanyu & Ji, Feng & Han, Yuting & He, Jinbo & Zhang, Xiaoya, 2024. "Fitting item response theory models using deep learning computational frameworks," OSF Preprints tjxab, Center for Open Science.
- Tsai, Tsung-Han, 2016. "A Bayesian Approach to Dynamic Panel Models with Endogenous Rarely Changing Variables," Political Science Research and Methods, Cambridge University Press, vol. 4(3), pages 595-620, September.
- Brick J. Michael, 2013. "Unit Nonresponse and Weighting Adjustments: A Critical Review," Journal of Official Statistics, Sciendo, vol. 29(3), pages 329-353, June.
- Mynbaev, Kairat & Martins-Filho, Carlos, 2015.
"Consistency and asymptotic normality for a nonparametric prediction under measurement errors,"
Journal of Multivariate Analysis, Elsevier, vol. 139(C), pages 166-188.
- Mynbaev, Kairat & Martins-Filho, Carlos, 2015. "Consistency and asymptotic normality for a nonparametric prediction under measurement errors," MPRA Paper 75845, University Library of Munich, Germany, revised 2014.
- Vitoratou, Silia & Ntzoufras, Ioannis & Moustaki, Irini, 2016. "Explaining the behavior of joint and marginal Monte Carlo estimators in latent variable models with independence assumptions," LSE Research Online Documents on Economics 57685, London School of Economics and Political Science, LSE Library.
- Johannes Hönekopp & Audrey Helen Linden, 2022. "Heterogeneity estimates in a biased world," PLOS ONE, Public Library of Science, vol. 17(2), pages 1-21, February.
- DongHyuk Lee & Soumendra N. Lahiri & Samiran Sinha, 2020. "A test of homogeneity of distributions when observations are subject to measurement errors," Biometrics, The International Biometric Society, vol. 76(3), pages 821-833, September.
- Roy, Arkaprava & Sarkar, Abhra, 2023. "Bayesian semiparametric multivariate density deconvolution via stochastic rotation of replicates," Computational Statistics & Data Analysis, Elsevier, vol. 182(C).
- Minjeong Jeon & Frank Rijmen & Sophia Rabe-Hesketh, 2017. "A Variational Maximization–Maximization Algorithm for Generalized Linear Mixed Models with Crossed Random Effects," Psychometrika, Springer;The Psychometric Society, vol. 82(3), pages 693-716, September.
- Sun-Joo Cho & Paul Boeck & Susan Embretson & Sophia Rabe-Hesketh, 2014. "Additive Multilevel Item Structure Models with Random Residuals: Item Modeling for Explanation and Item Generation," Psychometrika, Springer;The Psychometric Society, vol. 79(1), pages 84-104, January.
- David A. Wagstaff & Ofer Harel, 2011. "A closer examination of three small-sample approximations to the multiple-imputation degrees of freedom," Stata Journal, StataCorp LP, vol. 11(3), pages 403-419, September.
- Warrington Nicole M. & Tilling Kate & Howe Laura D. & Paternoster Lavinia & Pennell Craig E. & Wu Yan Yan & Briollais Laurent, 2014. "Robustness of the linear mixed effects model to error distribution assumptions and the consequences for genome-wide association studies," Statistical Applications in Genetics and Molecular Biology, De Gruyter, vol. 13(5), pages 567-587, October.
- repec:jss:jstsof:43:i11 is not listed on IDEAS
- Michel Winter & Isabelle Mirbel & Pierre Crescenzo, 2014. "Modeling Uncertainty when Estimating IT Projects Costs," Working Papers hal-00966573, HAL.
- Ng'ombe, John, 2019. "Economics of the Greenseeder Hand Planter, Discrete Choice Modeling, and On-Farm Field Experimentation," Thesis Commons jckt7, Center for Open Science.
- Richard R Snell, 2015. "Menage a Quoi? Optimal Number of Peer Reviewers," PLOS ONE, Public Library of Science, vol. 10(4), pages 1-14, April.
- Jason P. Estes & Bhramar Mukherjee & Jeremy M. G. Taylor, 2018. "Empirical Bayes Estimation and Prediction Using Summary-Level Information From External Big Data Sources Adjusting for Violations of Transportability," Statistics in Biosciences, Springer;International Chinese Statistical Association, vol. 10(3), pages 568-586, December.
Corrections
All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:bla:biomet:v:78:y:2022:i:4:p:1674-1685. See general information about how to correct material in RePEc.
If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.
If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .
If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.
For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Wiley Content Delivery (email available below). General contact details of provider: http://www.blackwellpublishing.com/journal.asp?ref=0006-341X .
Please note that corrections may take a couple of weeks to filter through the various RePEc services.