IDEAS home Printed from https://ideas.repec.org/a/bla/biomet/v76y2020i2p619-629.html
   My bibliography  Save this article

Gene‐based association analysis for bivariate time‐to‐event data through functional regression with copula models

Author

Listed:
  • Yue Wei
  • Yi Liu
  • Tao Sun
  • Wei Chen
  • Ying Ding

Abstract

Several gene‐based association tests for time‐to‐event traits have been proposed recently to detect whether a gene region (containing multiple variants), as a set, is associated with the survival outcome. However, for bivariate survival outcomes, to the best of our knowledge, there is no statistical method that can be directly applied for gene‐based association analysis. Motivated by a genetic study to discover the gene regions associated with the progression of a bilateral eye disease, age‐related macular degeneration (AMD), we implement a novel functional regression (FR) method under the copula framework. Specifically, the effects of variants within a gene region are modeled through a functional linear model, which then contributes to the marginal survival functions within the copula. Generalized score test statistics are derived to test for the association between bivariate survival traits and the genetic region. Extensive simulation studies are conducted to evaluate the type I error control and power performance of the proposed approach, with comparisons to several existing methods for a single survival trait, as well as the marginal Cox FR model using the robust sandwich estimator for bivariate survival traits. Finally, we apply our method to a large AMD study, the Age‐related Eye Disease Study, and to identify the gene regions that are associated with AMD progression.

Suggested Citation

  • Yue Wei & Yi Liu & Tao Sun & Wei Chen & Ying Ding, 2020. "Gene‐based association analysis for bivariate time‐to‐event data through functional regression with copula models," Biometrics, The International Biometric Society, vol. 76(2), pages 619-629, June.
  • Handle: RePEc:bla:biomet:v:76:y:2020:i:2:p:619-629
    DOI: 10.1111/biom.13165
    as

    Download full text from publisher

    File URL: https://doi.org/10.1111/biom.13165
    Download Restriction: no

    File URL: https://libkey.io/10.1111/biom.13165?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    References listed on IDEAS

    as
    1. Tao Sun & Yi Liu & Richard J. Cook & Wei Chen & Ying Ding, 2019. "Copula-based score test for bivariate time-to-event data, with application to a genetic study of AMD progression," Lifetime Data Analysis: An International Journal Devoted to Statistical Methods and Applications for Time-to-Event Data, Springer, vol. 25(3), pages 546-568, July.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Yichen Lou & Peijie Wang & Jianguo Sun, 2023. "A semi-parametric weighted likelihood approach for regression analysis of bivariate interval-censored outcomes from case-cohort studies," Lifetime Data Analysis: An International Journal Devoted to Statistical Methods and Applications for Time-to-Event Data, Springer, vol. 29(3), pages 628-653, July.
    2. Shu Jiang & Richard J. Cook, 2020. "A Mixture Model for Bivariate Interval-Censored Failure Times with Dependent Susceptibility," Statistics in Biosciences, Springer;International Chinese Statistical Association, vol. 12(1), pages 37-62, April.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:bla:biomet:v:76:y:2020:i:2:p:619-629. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Wiley Content Delivery (email available below). General contact details of provider: http://www.blackwellpublishing.com/journal.asp?ref=0006-341X .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.