IDEAS home Printed from https://ideas.repec.org/a/bla/biomet/v75y2019i4p1098-1108.html
   My bibliography  Save this article

Scalable estimation and regularization for the logistic normal multinomial model

Author

Listed:
  • Jingru Zhang
  • Wei Lin

Abstract

Clustered multinomial data are prevalent in a variety of applications such as microbiome studies, where metagenomic sequencing data are summarized as multinomial counts for a large number of bacterial taxa per subject. Count normalization with ad hoc zero adjustment tends to result in poor estimates of abundances for taxa with zero or small counts. To account for heterogeneity and overdispersion in such data, we suggest using the logistic normal multinomial (LNM) model with an arbitrary correlation structure to simultaneously estimate the taxa compositions by borrowing information across subjects. We overcome the computational difficulties in high dimensions by developing a stochastic approximation EM algorithm with Hamiltonian Monte Carlo sampling for scalable parameter estimation in the LNM model. The ill‐conditioning problem due to unstructured covariance is further mitigated by a covariance‐regularized estimator with a condition number constraint. The advantages of the proposed methods are illustrated through simulations and an application to human gut microbiome data.

Suggested Citation

  • Jingru Zhang & Wei Lin, 2019. "Scalable estimation and regularization for the logistic normal multinomial model," Biometrics, The International Biometric Society, vol. 75(4), pages 1098-1108, December.
  • Handle: RePEc:bla:biomet:v:75:y:2019:i:4:p:1098-1108
    DOI: 10.1111/biom.13071
    as

    Download full text from publisher

    File URL: https://doi.org/10.1111/biom.13071
    Download Restriction: no

    File URL: https://libkey.io/10.1111/biom.13071?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Zhao, Xin & Zhang, Jingru & Lin, Wei, 2023. "Clustering multivariate count data via Dirichlet-multinomial network fusion," Computational Statistics & Data Analysis, Elsevier, vol. 179(C).
    2. Patrick LeBlanc & Li Ma, 2023. "Microbiome subcommunity learning with logistic‐tree normal latent Dirichlet allocation," Biometrics, The International Biometric Society, vol. 79(3), pages 2321-2332, September.
    3. Tu, Wangshu & Browne, Ryan & Subedi, Sanjeena, 2024. "A mixture of logistic skew-normal multinomial models," Computational Statistics & Data Analysis, Elsevier, vol. 196(C).
    4. Hannaford, Naomi E. & Heaps, Sarah E. & Nye, Tom M.W. & Curtis, Thomas P. & Allen, Ben & Golightly, Andrew & Wilkinson, Darren J., 2023. "A sparse Bayesian hierarchical vector autoregressive model for microbial dynamics in a wastewater treatment plant," Computational Statistics & Data Analysis, Elsevier, vol. 179(C).

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:bla:biomet:v:75:y:2019:i:4:p:1098-1108. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Wiley Content Delivery (email available below). General contact details of provider: http://www.blackwellpublishing.com/journal.asp?ref=0006-341X .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.