IDEAS home Printed from https://ideas.repec.org/a/bla/biomet/v72y2016i4p1358-1368.html
   My bibliography  Save this article

PCAN: Probabilistic correlation analysis of two non‐normal data sets

Author

Listed:
  • Roger S. Zoh
  • Bani Mallick
  • Ivan Ivanov
  • Veera Baladandayuthapani
  • Ganiraju Manyam
  • Robert S. Chapkin
  • Johanna W. Lampe
  • Raymond J. Carroll

Abstract

Most cancer research now involves one or more assays profiling various biological molecules, e.g., messenger RNA and micro RNA, in samples collected on the same individuals. The main interest with these genomic data sets lies in the identification of a subset of features that are active in explaining the dependence between platforms. To quantify the strength of the dependency between two variables, correlation is often preferred. However, expression data obtained from next‐generation sequencing platforms are integer with very low counts for some important features. In this case, the sample Pearson correlation is not a valid estimate of the true correlation matrix, because the sample correlation estimate between two features/variables with low counts will often be close to zero, even when the natural parameters of the Poisson distribution are, in actuality, highly correlated. We propose a model‐based approach to correlation estimation between two non‐normal data sets, via a method we call Probabilistic Correlations ANalysis, or PCAN. PCAN takes into consideration the distributional assumption about both data sets and suggests that correlations estimated at the model natural parameter level are more appropriate than correlations estimated directly on the observed data. We demonstrate through a simulation study that PCAN outperforms other standard approaches in estimating the true correlation between the natural parameters. We then apply PCAN to the joint analysis of a microRNA (miRNA) and a messenger RNA (mRNA) expression data set from a squamous cell lung cancer study, finding a large number of negative correlation pairs when compared to the standard approaches.

Suggested Citation

  • Roger S. Zoh & Bani Mallick & Ivan Ivanov & Veera Baladandayuthapani & Ganiraju Manyam & Robert S. Chapkin & Johanna W. Lampe & Raymond J. Carroll, 2016. "PCAN: Probabilistic correlation analysis of two non‐normal data sets," Biometrics, The International Biometric Society, vol. 72(4), pages 1358-1368, December.
  • Handle: RePEc:bla:biomet:v:72:y:2016:i:4:p:1358-1368
    DOI: 10.1111/biom.12516
    as

    Download full text from publisher

    File URL: https://doi.org/10.1111/biom.12516
    Download Restriction: no

    File URL: https://libkey.io/10.1111/biom.12516?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    References listed on IDEAS

    as
    1. Geweke, John & Zhou, Guofu, 1996. "Measuring the Pricing Error of the Arbitrage Pricing Theory," The Review of Financial Studies, Society for Financial Studies, vol. 9(2), pages 557-587.
    2. Michael E. Tipping & Christopher M. Bishop, 1999. "Probabilistic Principal Component Analysis," Journal of the Royal Statistical Society Series B, Royal Statistical Society, vol. 61(3), pages 611-622.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Veronika Ročková & Edward I. George, 2016. "Fast Bayesian Factor Analysis via Automatic Rotations to Sparsity," Journal of the American Statistical Association, Taylor & Francis Journals, vol. 111(516), pages 1608-1622, October.
    2. Mumtaz, Haroon & Theodoridis, Konstantinos, 2017. "Common and country specific economic uncertainty," Journal of International Economics, Elsevier, vol. 105(C), pages 205-216.
    3. Oriana Bandiera & Andrea Prat & Stephen Hansen & Raffaella Sadun, 2020. "CEO Behavior and Firm Performance," Journal of Political Economy, University of Chicago Press, vol. 128(4), pages 1325-1369.
    4. Li, Yong & Yu, Jun, 2012. "Bayesian hypothesis testing in latent variable models," Journal of Econometrics, Elsevier, vol. 166(2), pages 237-246.
    5. Wang, Zihan & Daeipour, Mohamad & Xu, Hongyi, 2023. "Quantification and propagation of Aleatoric uncertainties in topological structures," Reliability Engineering and System Safety, Elsevier, vol. 233(C).
    6. Pablo Pereira Álvarez & Pierre Kerfriden & David Ryckelynck & Vincent Robin, 2021. "Real-Time Data Assimilation in Welding Operations Using Thermal Imaging and Accelerated High-Fidelity Digital Twinning," Mathematics, MDPI, vol. 9(18), pages 1-25, September.
    7. Fokoué, Ernest, 2005. "Mixtures of factor analyzers: an extension with covariates," Journal of Multivariate Analysis, Elsevier, vol. 95(2), pages 370-384, August.
    8. Celso Brunetti & Jeffrey H. Harris & Shawn Mankad, 2018. "Bank Holdings and Systemic Risk," Finance and Economics Discussion Series 2018-063, Board of Governors of the Federal Reserve System (U.S.).
    9. Matteo Barigozzi & Matteo Luciani, 2019. "Quasi Maximum Likelihood Estimation and Inference of Large Approximate Dynamic Factor Models via the EM algorithm," Papers 1910.03821, arXiv.org, revised Sep 2024.
    10. van der Linde, Angelika, 2008. "Variational Bayesian functional PCA," Computational Statistics & Data Analysis, Elsevier, vol. 53(2), pages 517-533, December.
    11. Xin Xu & Yang Lu & Yupeng Zhou & Zhiguo Fu & Yanjie Fu & Minghao Yin, 2021. "An Information-Explainable Random Walk Based Unsupervised Network Representation Learning Framework on Node Classification Tasks," Mathematics, MDPI, vol. 9(15), pages 1-14, July.
    12. Dorota Toczydlowska & Gareth W. Peters & Man Chung Fung & Pavel V. Shevchenko, 2017. "Stochastic Period and Cohort Effect State-Space Mortality Models Incorporating Demographic Factors via Probabilistic Robust Principal Components," Risks, MDPI, vol. 5(3), pages 1-77, July.
    13. Koop, Gary & Korobilis, Dimitris, 2010. "Bayesian Multivariate Time Series Methods for Empirical Macroeconomics," Foundations and Trends(R) in Econometrics, now publishers, vol. 3(4), pages 267-358, July.
    14. Fuentes-Albero, Cristina & Melosi, Leonardo, 2013. "Methods for computing marginal data densities from the Gibbs output," Journal of Econometrics, Elsevier, vol. 175(2), pages 132-141.
    15. Hugo Queiroz Abonizio & Janaina Ignacio de Morais & Gabriel Marques Tavares & Sylvio Barbon Junior, 2020. "Language-Independent Fake News Detection: English, Portuguese, and Spanish Mutual Features," Future Internet, MDPI, vol. 12(5), pages 1-18, May.
    16. Cederburg, Scott & O’Doherty, Michael S., 2015. "Asset-pricing anomalies at the firm level," Journal of Econometrics, Elsevier, vol. 186(1), pages 113-128.
    17. James Ming Chen & Mira Zovko & Nika Šimurina & Vatroslav Zovko, 2021. "Fear in a Handful of Dust: The Epidemiological, Environmental, and Economic Drivers of Death by PM 2.5 Pollution," IJERPH, MDPI, vol. 18(16), pages 1-59, August.
    18. Filippo Ferroni & Benjamin Klaus, 2015. "Euro Area business cycles in turbulent times: convergence or decoupling?," Applied Economics, Taylor & Francis Journals, vol. 47(34-35), pages 3791-3815, July.
    19. Bork, Lasse & Kaltwasser, Pablo Rovira & Sercu, Piet, 2022. "Aggregation bias in tests of the commodity currency hypothesis," Journal of Banking & Finance, Elsevier, vol. 135(C).
    20. Ouysse, Rachida & Kohn, Robert, 2010. "Bayesian variable selection and model averaging in the arbitrage pricing theory model," Computational Statistics & Data Analysis, Elsevier, vol. 54(12), pages 3249-3268, December.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:bla:biomet:v:72:y:2016:i:4:p:1358-1368. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Wiley Content Delivery (email available below). General contact details of provider: http://www.blackwellpublishing.com/journal.asp?ref=0006-341X .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.