IDEAS home Printed from https://ideas.repec.org/a/bla/biomet/v64y2008i4p1126-1136.html
   My bibliography  Save this article

Patient-Specific Dose Finding Based on Bivariate Outcomes and Covariates

Author

Listed:
  • Peter F. Thall
  • Hoang Q. Nguyen
  • Elihu H. Estey

Abstract

No abstract is available for this item.

Suggested Citation

  • Peter F. Thall & Hoang Q. Nguyen & Elihu H. Estey, 2008. "Patient-Specific Dose Finding Based on Bivariate Outcomes and Covariates," Biometrics, The International Biometric Society, vol. 64(4), pages 1126-1136, December.
  • Handle: RePEc:bla:biomet:v:64:y:2008:i:4:p:1126-1136
    as

    Download full text from publisher

    File URL: http://hdl.handle.net/10.1111/j.1541-0420.2008.01009.x
    Download Restriction: Access to full text is restricted to subscribers.
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Peter F. Thall & Leiko H. Wooten & Elizabeth J. Shpall, 2006. "A Geometric Approach to Comparing Treatments for Rapidly Fatal Diseases," Biometrics, The International Biometric Society, vol. 62(1), pages 193-201, March.
    2. Peter F. Thall & John D. Cook, 2004. "Dose-Finding Based on Efficacy–Toxicity Trade-Offs," Biometrics, The International Biometric Society, vol. 60(3), pages 684-693, September.
    3. David J. Spiegelhalter & Nicola G. Best & Bradley P. Carlin & Angelika Van Der Linde, 2002. "Bayesian measures of model complexity and fit," Journal of the Royal Statistical Society Series B, Royal Statistical Society, vol. 64(4), pages 583-639, October.
    4. Anastasia Ivanova, 2003. "A New Dose-Finding Design for Bivariate Outcomes," Biometrics, The International Biometric Society, vol. 59(4), pages 1001-1007, December.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Peter F. Thall & Aniko Szabo & Hoang Q. Nguyen & Catherine M. Amlie-Lefond & Osama O. Zaidat, 2011. "Optimizing the Concentration and Bolus of a Drug Delivered by Continuous Infusion," Biometrics, The International Biometric Society, vol. 67(4), pages 1638-1646, December.
    2. Alam, M. Iftakhar & Bogacka, Barbara & Coad, D. Stephen, 2017. "Pharmacokinetically guided optimum adaptive dose selection in early phase clinical trials," Computational Statistics & Data Analysis, Elsevier, vol. 111(C), pages 183-202.
    3. Yifei Zhang & Sha Cao & Chi Zhang & Ick Hoon Jin & Yong Zang, 2021. "A Bayesian adaptive phase I/II clinical trial design with late‐onset competing risk outcomes," Biometrics, The International Biometric Society, vol. 77(3), pages 796-808, September.
    4. Nadine Houede & Peter F. Thall & Hoang Nguyen & Xavier Paoletti & Andrew Kramar, 2010. "Utility-Based Optimization of Combination Therapy Using Ordinal Toxicity and Efficacy in Phase I/II Trials," Biometrics, The International Biometric Society, vol. 66(2), pages 532-540, June.
    5. Beibei Guo & Rui Zhang, 2018. "Photographic Capture-Recapture for Free-Roaming Dog Population Estimation: Is It Possible to Optimize the Dog Photo-Identification?," Biostatistics and Biometrics Open Access Journal, Juniper Publishers Inc., vol. 5(3), pages 88-90, February.
    6. Xinyang Huang & Jin Xu, 2020. "Estimating individualized treatment rules with risk constraint," Biometrics, The International Biometric Society, vol. 76(4), pages 1310-1318, December.
    7. Beibei Guo & Ying Yuan, 2017. "Bayesian Phase I/II Biomarker-Based Dose Finding for Precision Medicine With Molecularly Targeted Agents," Journal of the American Statistical Association, Taylor & Francis Journals, vol. 112(518), pages 508-520, April.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Shenghua Fan & Bee Leng Lee & Ying Lu, 2020. "A Curve-Free Bayesian Decision-Theoretic Design for Phase Ia/Ib Trials Considering Both Safety and Efficacy Outcomes," Statistics in Biosciences, Springer;International Chinese Statistical Association, vol. 12(2), pages 146-166, July.
    2. Guosheng Yin & Yisheng Li & Yuan Ji, 2006. "Bayesian Dose-Finding in Phase I/II Clinical Trials Using Toxicity and Efficacy Odds Ratios," Biometrics, The International Biometric Society, vol. 62(3), pages 777-787, September.
    3. Sergei Leonov & Bahjat Qaqish, 2020. "Correlated endpoints: simulation, modeling, and extreme correlations," Statistical Papers, Springer, vol. 61(2), pages 741-766, April.
    4. Peter F. Thall & Aniko Szabo & Hoang Q. Nguyen & Catherine M. Amlie-Lefond & Osama O. Zaidat, 2011. "Optimizing the Concentration and Bolus of a Drug Delivered by Continuous Infusion," Biometrics, The International Biometric Society, vol. 67(4), pages 1638-1646, December.
    5. Nadine Houede & Peter F. Thall & Hoang Nguyen & Xavier Paoletti & Andrew Kramar, 2010. "Utility-Based Optimization of Combination Therapy Using Ordinal Toxicity and Efficacy in Phase I/II Trials," Biometrics, The International Biometric Society, vol. 66(2), pages 532-540, June.
    6. David Kaplan & Jianshen Chen, 2012. "A Two-Step Bayesian Approach for Propensity Score Analysis: Simulations and Case Study," Psychometrika, Springer;The Psychometric Society, vol. 77(3), pages 581-609, July.
    7. Buddhavarapu, Prasad & Bansal, Prateek & Prozzi, Jorge A., 2021. "A new spatial count data model with time-varying parameters," Transportation Research Part B: Methodological, Elsevier, vol. 150(C), pages 566-586.
    8. Tommi Härkänen & Anna But & Jari Haukka, 2017. "Non-parametric Bayesian Intensity Model: Exploring Time-to-Event Data on Two Time Scales," Scandinavian Journal of Statistics, Danish Society for Theoretical Statistics;Finnish Statistical Society;Norwegian Statistical Association;Swedish Statistical Association, vol. 44(3), pages 798-814, September.
    9. Mumtaz, Haroon & Theodoridis, Konstantinos, 2017. "Common and country specific economic uncertainty," Journal of International Economics, Elsevier, vol. 105(C), pages 205-216.
    10. Jesse Elliott & Zemin Bai & Shu-Ching Hsieh & Shannon E Kelly & Li Chen & Becky Skidmore & Said Yousef & Carine Zheng & David J Stewart & George A Wells, 2020. "ALK inhibitors for non-small cell lung cancer: A systematic review and network meta-analysis," PLOS ONE, Public Library of Science, vol. 15(2), pages 1-18, February.
    11. Christina Leuker & Thorsten Pachur & Ralph Hertwig & Timothy J. Pleskac, 2019. "Do people exploit risk–reward structures to simplify information processing in risky choice?," Journal of the Economic Science Association, Springer;Economic Science Association, vol. 5(1), pages 76-94, August.
    12. Francois Olivier & Laval Guillaume, 2011. "Deviance Information Criteria for Model Selection in Approximate Bayesian Computation," Statistical Applications in Genetics and Molecular Biology, De Gruyter, vol. 10(1), pages 1-25, July.
    13. Ferraz, V.R.S. & Moura, F.A.S., 2012. "Small area estimation using skew normal models," Computational Statistics & Data Analysis, Elsevier, vol. 56(10), pages 2864-2874.
    14. Raggi, Davide & Bordignon, Silvano, 2012. "Long memory and nonlinearities in realized volatility: A Markov switching approach," Computational Statistics & Data Analysis, Elsevier, vol. 56(11), pages 3730-3742.
    15. Angelica Gianfreda & Francesco Ravazzolo & Luca Rossini, 2023. "Large Time‐Varying Volatility Models for Hourly Electricity Prices," Oxford Bulletin of Economics and Statistics, Department of Economics, University of Oxford, vol. 85(3), pages 545-573, June.
    16. Niko Hauzenberger & Florian Huber & Massimiliano Marcellino & Nico Petz, 2021. "Gaussian Process Vector Autoregressions and Macroeconomic Uncertainty," Papers 2112.01995, arXiv.org, revised Nov 2022.
    17. Li, Yong & Yu, Jun, 2012. "Bayesian hypothesis testing in latent variable models," Journal of Econometrics, Elsevier, vol. 166(2), pages 237-246.
    18. Ander Wilson & Jessica Tryner & Christian L'Orange & John Volckens, 2020. "Bayesian nonparametric monotone regression," Environmetrics, John Wiley & Sons, Ltd., vol. 31(8), December.
    19. Julie Vercelloni & M Julian Caley & Mohsen Kayal & Samantha Low-Choy & Kerrie Mengersen, 2014. "Understanding Uncertainties in Non-Linear Population Trajectories: A Bayesian Semi-Parametric Hierarchical Approach to Large-Scale Surveys of Coral Cover," PLOS ONE, Public Library of Science, vol. 9(11), pages 1-9, November.
    20. Rubio, F.J. & Steel, M.F.J., 2011. "Inference for grouped data with a truncated skew-Laplace distribution," Computational Statistics & Data Analysis, Elsevier, vol. 55(12), pages 3218-3231, December.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:bla:biomet:v:64:y:2008:i:4:p:1126-1136. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Wiley Content Delivery (email available below). General contact details of provider: http://www.blackwellpublishing.com/journal.asp?ref=0006-341X .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.