IDEAS home Printed from https://ideas.repec.org/a/bla/biomet/v63y2007i4p1181-1188.html
   My bibliography  Save this article

Evaluating the Predictiveness of a Continuous Marker

Author

Listed:
  • Ying Huang
  • Margaret Sullivan Pepe
  • Ziding Feng

Abstract

No abstract is available for this item.

Suggested Citation

  • Ying Huang & Margaret Sullivan Pepe & Ziding Feng, 2007. "Evaluating the Predictiveness of a Continuous Marker," Biometrics, The International Biometric Society, vol. 63(4), pages 1181-1188, December.
  • Handle: RePEc:bla:biomet:v:63:y:2007:i:4:p:1181-1188
    as

    Download full text from publisher

    File URL: http://hdl.handle.net/10.1111/j.1541-0420.2007.00814.x
    Download Restriction: Access to full text is restricted to subscribers.
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. John Copas, 1999. "The Effectiveness of Risk Scores: the Logit Rank Plot," Journal of the Royal Statistical Society Series C, Royal Statistical Society, vol. 48(2), pages 165-183.
    2. P. J. Heagerty & M. S. Pepe, 1999. "Semiparametric estimation of regression quantiles with application to standardizing weight for height and age in US children," Journal of the Royal Statistical Society Series C, Royal Statistical Society, vol. 48(4), pages 533-551.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Alessandra Amendola & Francesco Giordano & Maria Lucia Parrella & Marialuisa Restaino, 2017. "Variable selection in high‐dimensional regression: a nonparametric procedure for business failure prediction," Applied Stochastic Models in Business and Industry, John Wiley & Sons, vol. 33(4), pages 355-368, August.
    2. Y. Huang & M. S. Pepe, 2010. "Semiparametric methods for evaluating the covariate‐specific predictiveness of continuous markers in matched case–control studies," Journal of the Royal Statistical Society Series C, Royal Statistical Society, vol. 59(3), pages 437-456, May.
    3. Peter B. Gilbert & Michael G. Hudgens, 2008. "Evaluating Candidate Principal Surrogate Endpoints," Biometrics, The International Biometric Society, vol. 64(4), pages 1146-1154, December.
    4. Gu Wen & Pepe Margaret, 2009. "Measures to Summarize and Compare the Predictive Capacity of Markers," The International Journal of Biostatistics, De Gruyter, vol. 5(1), pages 1-49, October.
    5. Margaret Sullivan Pepe, 2008. "Discussions," Biometrics, The International Biometric Society, vol. 64(1), pages 256-258, March.
    6. Ying Huang & Peter B. Gilbert, 2011. "Comparing Biomarkers as Principal Surrogate Endpoints," Biometrics, The International Biometric Society, vol. 67(4), pages 1442-1451, December.
    7. Y. Huang & M. S. Pepe, 2009. "A Parametric ROC Model-Based Approach for Evaluating the Predictiveness of Continuous Markers in Case–Control Studies," Biometrics, The International Biometric Society, vol. 65(4), pages 1133-1144, December.
    8. Stuart G. Baker & Nancy R. Cook & Andrew Vickers & Barnett S. Kramer, 2009. "Using relative utility curves to evaluate risk prediction," Journal of the Royal Statistical Society Series A, Royal Statistical Society, vol. 172(4), pages 729-748, October.
    9. Ying Huang & Eric Laber, 2016. "Personalized Evaluation of Biomarker Value: A Cost-Benefit Perspective," Statistics in Biosciences, Springer;International Chinese Statistical Association, vol. 8(1), pages 43-65, June.
    10. Janes Holly & Brown Marshall D. & Huang Ying & Pepe Margaret S., 2014. "An Approach to Evaluating and Comparing Biomarkers for Patient Treatment Selection," The International Journal of Biostatistics, De Gruyter, vol. 10(1), pages 99-121, May.
    11. Tianxi Cai & Thomas A Gerds & Yingye Zheng & Jinbo Chen, 2011. "Robust Prediction of t-Year Survival with Data from Multiple Studies," Biometrics, The International Biometric Society, vol. 67(2), pages 436-444, June.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Hemant Kulkarni & Jayabrata Biswas & Kiranmoy Das, 2019. "A joint quantile regression model for multiple longitudinal outcomes," AStA Advances in Statistical Analysis, Springer;German Statistical Society, vol. 103(4), pages 453-473, December.
    2. Margaret Sullivan Pepe & Tianxi Cai, 2004. "The Analysis of Placement Values for Evaluating Discriminatory Measures," Biometrics, The International Biometric Society, vol. 60(2), pages 528-535, June.
    3. Holly Janes & Margaret S. Pepe, 2008. "Matching in Studies of Classification Accuracy: Implications for Analysis, Efficiency, and Assessment of Incremental Value," Biometrics, The International Biometric Society, vol. 64(1), pages 1-9, March.
    4. Ziyi Li & Yijian Huang & Dattatraya Patil & Martin G. Sanda, 2023. "Covariate adjustment in continuous biomarker assessment," Biometrics, The International Biometric Society, vol. 79(1), pages 39-48, March.
    5. Ilaria Lucrezia Amerise, 2013. "Weighted Non-Crossing Quantile Regressions," Working Papers 201308, Università della Calabria, Dipartimento di Economia, Statistica e Finanza "Giovanni Anania" - DESF.
    6. Lori E. Dodd & Margaret S. Pepe, 2003. "Partial AUC Estimation and Regression," Biometrics, The International Biometric Society, vol. 59(3), pages 614-623, September.
    7. Holly Janes & Gary Longton & Margaret S. Pepe, 2009. "Accommodating covariates in receiver operating characteristic analysis," Stata Journal, StataCorp LP, vol. 9(1), pages 17-39, March.
    8. Jooyong Shim & Changha Hwang & Kyungha Seok, 2014. "Composite support vector quantile regression estimation," Computational Statistics, Springer, vol. 29(6), pages 1651-1665, December.
    9. Yingye Zheng & Patrick J. Heagerty, 2007. "Prospective Accuracy for Longitudinal Markers," Biometrics, The International Biometric Society, vol. 63(2), pages 332-341, June.
    10. Eyal Bar-Haim & Louis Chauvel & Janet C. Gornick & Anne Hartung, 2023. "The Persistence of the Gender Earnings Gap: Cohort Trends and the Role of Education in Twelve Countries," Social Indicators Research: An International and Interdisciplinary Journal for Quality-of-Life Measurement, Springer, vol. 165(3), pages 821-841, February.
    11. Isabelle Charlier & Davy Paindaveine, 2014. "Conditional Quantile Estimation through Optimal Quantization," Working Papers ECARES ECARES 2014-28, ULB -- Universite Libre de Bruxelles.
    12. Yingye Zheng & Tianxi Cai & Yuying Jin & Ziding Feng, 2012. "Evaluating Prognostic Accuracy of Biomarkers under Competing Risk," Biometrics, The International Biometric Society, vol. 68(2), pages 388-396, June.
    13. Louis Chauvel, 2014. "The Intensity and Shape of Inequality: The ABG Method of Distributional Analysis," LIS Working papers 609, LIS Cross-National Data Center in Luxembourg.
    14. Y. Huang & M. S. Pepe, 2010. "Semiparametric methods for evaluating the covariate‐specific predictiveness of continuous markers in matched case–control studies," Journal of the Royal Statistical Society Series C, Royal Statistical Society, vol. 59(3), pages 437-456, May.
    15. Margaret Sullivan Pepe, 2000. "An Interpretation for the ROC Curve and Inference Using GLM Procedures," Biometrics, The International Biometric Society, vol. 56(2), pages 352-359, June.
    16. Louis Chauvel, 2016. "The Intensity and Shape of Inequality: The ABG Method of Distributional Analysis," Review of Income and Wealth, International Association for Research in Income and Wealth, vol. 62(1), pages 52-68, March.
    17. Esa Karonen & Mikko Niemelä, 2022. "Necessity-Rich, Leisure-Poor: The Long-Term Relationship Between Income Cohorts and Consumption Through Age-Period-Cohort Analysis," Journal of Family and Economic Issues, Springer, vol. 43(3), pages 599-620, September.
    18. Tianxi Cai & Yingye Zheng, 2007. "Model Checking for ROC Regression Analysis," Biometrics, The International Biometric Society, vol. 63(1), pages 152-163, March.
    19. Jayabrata Biswas & Kiranmoy Das, 2021. "A Bayesian quantile regression approach to multivariate semi-continuous longitudinal data," Computational Statistics, Springer, vol. 36(1), pages 241-260, March.
    20. Muhammad Amin & Lixin Song & Milton Abdul Thorlie & Xiaoguang Wang, 2015. "SCAD-penalized quantile regression for high-dimensional data analysis and variable selection," Statistica Neerlandica, Netherlands Society for Statistics and Operations Research, vol. 69(3), pages 212-235, August.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:bla:biomet:v:63:y:2007:i:4:p:1181-1188. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Wiley Content Delivery (email available below). General contact details of provider: http://www.blackwellpublishing.com/journal.asp?ref=0006-341X .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.