IDEAS home Printed from https://ideas.repec.org/a/bla/biomet/v60y2004i2p444-450.html
   My bibliography  Save this article

Assessing the Goodness-of-Fit of Hidden Markov Models

Author

Listed:
  • Rachel MacKay Altman

Abstract

No abstract is available for this item.

Suggested Citation

  • Rachel MacKay Altman, 2004. "Assessing the Goodness-of-Fit of Hidden Markov Models," Biometrics, The International Biometric Society, vol. 60(2), pages 444-450, June.
  • Handle: RePEc:bla:biomet:v:60:y:2004:i:2:p:444-450
    as

    Download full text from publisher

    File URL: http://hdl.handle.net/10.1111/j.0006-341X.2004.00189.x
    Download Restriction: Access to full text is restricted to subscribers.
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Leroux, Brian G., 1992. "Maximum-likelihood estimation for hidden Markov models," Stochastic Processes and their Applications, Elsevier, vol. 40(1), pages 127-143, February.
    2. Ming-Hui Chen & Joseph G. Ibrahim, 2000. "Bayesian Predictive Inference for Time Series Count Data," Biometrics, The International Biometric Society, vol. 56(3), pages 678-685, September.
    3. Blais, Michel & MacGibbon, Brenda & Roy, Roch, 2000. "Limit theorems for regression models of time series of counts," Statistics & Probability Letters, Elsevier, vol. 46(2), pages 161-168, January.
    4. Paolo Giudici & Tobias Ryden & Pierre Vandekerkhove, 2000. "Likelihood-Ratio Tests for Hidden Markov Models," Biometrics, The International Biometric Society, vol. 56(3), pages 742-747, September.
    5. A. Alzaid & M. Al-Osh, 1993. "Some autoregressive moving average processes with generalized Poisson marginal distributions," Annals of the Institute of Statistical Mathematics, Springer;The Institute of Statistical Mathematics, vol. 45(2), pages 223-232, June.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Junling Jiang & Zhaoxin He & Changren Ke, 2023. "Construction Contractors’ Carbon Emissions Reduction Intention: A Study Based on Structural Equation Model," Sustainability, MDPI, vol. 15(14), pages 1-21, July.
    2. Ting Wang & Jiancang Zhuang & Kazushige Obara & Hiroshi Tsuruoka, 2017. "Hidden Markov modelling of sparse time series from non-volcanic tremor observations," Journal of the Royal Statistical Society Series C, Royal Statistical Society, vol. 66(4), pages 691-715, August.
    3. Geoffrey Decrouez & Andrew Robinson, 2013. "Time‐Series Models for Border Inspection Data," Risk Analysis, John Wiley & Sons, vol. 33(12), pages 2142-2153, December.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Jörn Dannemann & Hajo Holzmann, 2008. "Likelihood Ratio Testing for Hidden Markov Models Under Non‐standard Conditions," Scandinavian Journal of Statistics, Danish Society for Theoretical Statistics;Finnish Statistical Society;Norwegian Statistical Association;Swedish Statistical Association, vol. 35(2), pages 309-321, June.
    2. Dannemann, Jorn & Holzmann, Hajo, 2008. "The likelihood ratio test for hidden Markov models in two-sample problems," Computational Statistics & Data Analysis, Elsevier, vol. 52(4), pages 1850-1859, January.
    3. Arielle Beyaert & Juan rez-Castej, 2000. "Switching regime models in the Spanish inter-bank market," The European Journal of Finance, Taylor & Francis Journals, vol. 6(2), pages 93-112.
    4. María Luz Gámiz & Nikolaos Limnios & Mari Carmen Segovia-García, 2023. "The continuous-time hidden Markov model based on discretization. Properties of estimators and applications," Statistical Inference for Stochastic Processes, Springer, vol. 26(3), pages 525-550, October.
    5. Jean Peyhardi, 2024. "Integer-valued autoregressive models based on quasi Pólya thinning operator," Statistical Inference for Stochastic Processes, Springer, vol. 27(3), pages 813-838, October.
    6. Harry Joe, 2019. "Likelihood Inference for Generalized Integer Autoregressive Time Series Models," Econometrics, MDPI, vol. 7(4), pages 1-13, October.
    7. Driffill, John & Sola, Martin & Kenc, Turalay & Spagnolo, Fabio, 2004. "On Model Selection and Markov Switching: A Empirical Examination of Term Structure Models with Regime Shifts," CEPR Discussion Papers 4165, C.E.P.R. Discussion Papers.
    8. Max Greenfeld & Dmitri S Pavlichin & Hideo Mabuchi & Daniel Herschlag, 2012. "Single Molecule Analysis Research Tool (SMART): An Integrated Approach for Analyzing Single Molecule Data," PLOS ONE, Public Library of Science, vol. 7(2), pages 1-12, February.
    9. Ahmed Belhadjayed & Grégoire Loeper & Frédéric Abergel, 2016. "Forecasting Trends With Asset Prices," Post-Print hal-01512431, HAL.
    10. Aknouche, Abdelhakim & Dimitrakopoulos, Stefanos, 2020. "On an integer-valued stochastic intensity model for time series of counts," MPRA Paper 105406, University Library of Munich, Germany.
    11. Genon-Catalot, Valentine, 2003. "A non-linear explicit filter," Statistics & Probability Letters, Elsevier, vol. 61(2), pages 145-154, January.
    12. Lacour, Claire, 2008. "Adaptive estimation of the transition density of a particular hidden Markov chain," Journal of Multivariate Analysis, Elsevier, vol. 99(5), pages 787-814, May.
    13. Zhao, Haibing & Fung, Wing Kam, 2016. "A powerful FDR control procedure for multiple hypotheses," Computational Statistics & Data Analysis, Elsevier, vol. 98(C), pages 60-70.
    14. Massimo Guidolin, 2013. "Markov switching models in asset pricing research," Chapters, in: Adrian R. Bell & Chris Brooks & Marcel Prokopczuk (ed.), Handbook of Research Methods and Applications in Empirical Finance, chapter 1, pages 3-44, Edward Elgar Publishing.
    15. Tim Sainburg & Marvin Thielk & Timothy Q Gentner, 2020. "Finding, visualizing, and quantifying latent structure across diverse animal vocal repertoires," PLOS Computational Biology, Public Library of Science, vol. 16(10), pages 1-48, October.
    16. Anton Molyboha & Michael Zabarankin, 2012. "Stochastic Optimization of Sensor Placement for Diver Detection," Operations Research, INFORMS, vol. 60(2), pages 292-312, April.
    17. Holger Fink & Yulia Klimova & Claudia Czado & Jakob Stöber, 2017. "Regime Switching Vine Copula Models for Global Equity and Volatility Indices," Econometrics, MDPI, vol. 5(1), pages 1-38, January.
    18. Pierre Guérin & Danilo Leiva-Leon & Massimiliano Marcellino, 2020. "Markov-Switching Three-Pass Regression Filter," Journal of Business & Economic Statistics, Taylor & Francis Journals, vol. 38(2), pages 285-302, April.
    19. William Dunsmuir & Jieyi He, 2017. "Marginal Estimation of Parameter Driven Binomial Time Series Models," Journal of Time Series Analysis, Wiley Blackwell, vol. 38(1), pages 120-144, January.
    20. Roberto Colombi & Sabrina Giordano, 2011. "Testing lumpability for marginal discrete hidden Markov models," AStA Advances in Statistical Analysis, Springer;German Statistical Society, vol. 95(3), pages 293-311, September.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:bla:biomet:v:60:y:2004:i:2:p:444-450. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Wiley Content Delivery (email available below). General contact details of provider: http://www.blackwellpublishing.com/journal.asp?ref=0006-341X .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.