IDEAS home Printed from https://ideas.repec.org/a/bla/anzsta/v62y2020i4p485-507.html
   My bibliography  Save this article

The focussed information criterion for generalised linear regression models for time series

Author

Listed:
  • S. C. Pandhare
  • T. V. Ramanathan

Abstract

The present paper proposes the focussed information criterion (FIC) to tackle the model selection problems pertinent to generalised linear models (GLM) for time series. As a first step towards constructing the FIC, we formally discuss the local asymptotic theory of quasi‐maximum likelihood estimation for time series GLM under potential model misspecification. The general FIC formula is derived subsequently that is useful for the simultaneous selection of the order of the autoregressive response as well as a subset of important covariates. We also develop the average FIC (AFIC) that is instrumental in selecting an overall good model for a range of covariates and time regions and establish the equivalence of the AFIC with the classical Akaike's information criterion (AIC). We demonstrate our theory with the analysis of rainfall patterns in Melbourne by means of the logistic and Gamma regression models.

Suggested Citation

  • S. C. Pandhare & T. V. Ramanathan, 2020. "The focussed information criterion for generalised linear regression models for time series," Australian & New Zealand Journal of Statistics, Australian Statistical Publishing Association Inc., vol. 62(4), pages 485-507, December.
  • Handle: RePEc:bla:anzsta:v:62:y:2020:i:4:p:485-507
    DOI: 10.1111/anzs.12310
    as

    Download full text from publisher

    File URL: https://doi.org/10.1111/anzs.12310
    Download Restriction: no

    File URL: https://libkey.io/10.1111/anzs.12310?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    References listed on IDEAS

    as
    1. Gerda Claeskens & Christophe Croux & Johan Van Kerckhoven, 2006. "Variable Selection for Logistic Regression Using a Prediction-Focused Information Criterion," Biometrics, The International Biometric Society, vol. 62(4), pages 972-979, December.
    2. Hansen, Bruce E., 2005. "Challenges For Econometric Model Selection," Econometric Theory, Cambridge University Press, vol. 21(1), pages 60-68, February.
    3. Claeskens,Gerda & Hjort,Nils Lid, 2008. "Model Selection and Model Averaging," Cambridge Books, Cambridge University Press, number 9780521852258, October.
    4. Pircalabelu, Eugen & Claeskens, Gerda & Waldorp, Lourens J., 2015. "A focused information criterion for graphical models," LIDAM Reprints ISBA 2015044, Université catholique de Louvain, Institute of Statistics, Biostatistics and Actuarial Sciences (ISBA).
    5. Gerda Claeskens & Raymond J. Carroll, 2007. "An asymptotic theory for model selection inference in general semiparametric problems," Biometrika, Biometrika Trust, vol. 94(2), pages 249-265.
    6. Gerda Claeskens, 2012. "Focused estimation and model averaging with penalization methods: an overview," Statistica Neerlandica, Netherlands Society for Statistics and Operations Research, vol. 66(3), pages 272-287, August.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Kitagawa, Toru & Muris, Chris, 2016. "Model averaging in semiparametric estimation of treatment effects," Journal of Econometrics, Elsevier, vol. 193(1), pages 271-289.
    2. Toru Kitagawa & Chris Muris, 2013. "Covariate selection and model averaging in semiparametric estimation of treatment effects," CeMMAP working papers 61/13, Institute for Fiscal Studies.
    3. De Luca, Giuseppe & Magnus, Jan R. & Peracchi, Franco, 2018. "Weighted-average least squares estimation of generalized linear models," Journal of Econometrics, Elsevier, vol. 204(1), pages 1-17.
    4. Xinyu Zhang & Alan T. K. Wan & Sherry Z. Zhou, 2011. "Focused Information Criteria, Model Selection, and Model Averaging in a Tobit Model With a Nonzero Threshold," Journal of Business & Economic Statistics, Taylor & Francis Journals, vol. 30(1), pages 132-142, June.
    5. S. C. Pandhare & T. V. Ramanathan, 2020. "The robust focused information criterion for strong mixing stochastic processes with $$\mathscr {L}^{2}$$ L 2 -differentiable parametric densities," Statistical Inference for Stochastic Processes, Springer, vol. 23(3), pages 637-663, October.
    6. Jiang Du & Zhongzhan Zhang & Tianfa Xie, 2017. "Focused information criterion and model averaging in censored quantile regression," Metrika: International Journal for Theoretical and Applied Statistics, Springer, vol. 80(5), pages 547-570, July.
    7. Hai Wang & Xinjie Chen & Nancy Flournoy, 2016. "The focused information criterion for varying-coefficient partially linear measurement error models," Statistical Papers, Springer, vol. 57(1), pages 99-113, March.
    8. Gioldasis, Georgios & Musolesi, Antonio & Simioni, Michel, 2023. "Interactive R&D spillovers: An estimation strategy based on forecasting-driven model selection," International Journal of Forecasting, Elsevier, vol. 39(1), pages 144-169.
    9. Wei, Yuting & Wang, Qihua & Duan, Xiaogang & Qin, Jing, 2021. "Bias-corrected Kullback–Leibler distance criterion based model selection with covariables missing at random," Computational Statistics & Data Analysis, Elsevier, vol. 160(C).
    10. Brownlees, Christian T. & Gallo, Giampiero M., 2011. "Shrinkage estimation of semiparametric multiplicative error models," International Journal of Forecasting, Elsevier, vol. 27(2), pages 365-378.
    11. Giuseppe Luca & Jan R. Magnus & Franco Peracchi, 2023. "Weighted-Average Least Squares (WALS): Confidence and Prediction Intervals," Computational Economics, Springer;Society for Computational Economics, vol. 61(4), pages 1637-1664, April.
    12. Liu, Chu-An, 2015. "Distribution theory of the least squares averaging estimator," Journal of Econometrics, Elsevier, vol. 186(1), pages 142-159.
    13. Ghosh, D. & Yuan, Z., 2009. "An improved model averaging scheme for logistic regression," Journal of Multivariate Analysis, Elsevier, vol. 100(8), pages 1670-1681, September.
    14. DiTraglia, Francis J., 2016. "Using invalid instruments on purpose: Focused moment selection and averaging for GMM," Journal of Econometrics, Elsevier, vol. 195(2), pages 187-208.
    15. Gerda Claeskens, 2012. "Focused estimation and model averaging with penalization methods: an overview," Statistica Neerlandica, Netherlands Society for Statistics and Operations Research, vol. 66(3), pages 272-287, August.
    16. Yuying Sun & Shaoxin Hong & Zongwu Cai, 2023. "Optimal Local Model Averaging for Divergent-Dimensional Functional-Coefficient Regressions," WORKING PAPERS SERIES IN THEORETICAL AND APPLIED ECONOMICS 202309, University of Kansas, Department of Economics, revised Sep 2023.
    17. Magnus, Jan R. & Wan, Alan T.K. & Zhang, Xinyu, 2011. "Weighted average least squares estimation with nonspherical disturbances and an application to the Hong Kong housing market," Computational Statistics & Data Analysis, Elsevier, vol. 55(3), pages 1331-1341, March.
    18. Zhang, Qingzhao & Duan, Xiaogang & Ma, Shuangge, 2017. "Focused information criterion and model averaging with generalized rank regression," Statistics & Probability Letters, Elsevier, vol. 122(C), pages 11-19.
    19. Ruoyao Shi, 2021. "An Averaging Estimator for Two Step M Estimation in Semiparametric Models," Working Papers 202105, University of California at Riverside, Department of Economics.
    20. Tomohiro Ando & Ruey S. Tsay, 2009. "Model selection for generalized linear models with factor‐augmented predictors," Applied Stochastic Models in Business and Industry, John Wiley & Sons, vol. 25(3), pages 207-235, May.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:bla:anzsta:v:62:y:2020:i:4:p:485-507. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Wiley Content Delivery (email available below). General contact details of provider: http://www.blackwellpublishing.com/journal.asp?ref=1369-1473 .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.