IDEAS home Printed from https://ideas.repec.org/a/bla/ajarec/v61y2017i1p36-55.html
   My bibliography  Save this article

State-contingent analysis of farmers’ response to weather variability: irrigated dairy farming in the Murray Valley, Australia

Author

Listed:
  • Thilak Mallawaarachchi
  • Céline Nauges
  • Orion Sanders
  • John Quiggin

Abstract

The agricultural sector is commonly regarded as one of the most vulnerable to climate change. Current understanding of the impact of climate change on this sector relies on the underlying assumptions about farmers’ possible responses to weather variability, including changes in crop choice, input combinations and land management practices. Many previous analyses rely on the implicit (and restrictive) assumption that farmers operate under a fixed technology set across different states of nature. This assumption, represented through stochastic production or profit functions, is commonly made but seldom tested and may understate farmers’ responses to climate change if statecontingent production technologies are, in reality, more flexible. The potential for farmers to adapt production technologies in response to unforeseen events is at the core of the state-contingent approach. Advanced in Chambers and Quiggin (2000), the theory contends that producers can manage uncertainty through the allocation of productive inputs to different states of nature. In this article, we test the assumption that farmers’ observed behaviour is consistent with the state-contingent production theory using farm-level data from Australia. More precisely, we estimate the milk production technology for a sample of irrigated dairy farms from the southern Murray–Darling Basin over the period from 2006–2007 to 2009–2010.
(This abstract was borrowed from another version of this item.)

Suggested Citation

  • Thilak Mallawaarachchi & Céline Nauges & Orion Sanders & John Quiggin, 2017. "State-contingent analysis of farmers’ response to weather variability: irrigated dairy farming in the Murray Valley, Australia," Australian Journal of Agricultural and Resource Economics, Australian Agricultural and Resource Economics Society, vol. 61(1), pages 36-55, January.
  • Handle: RePEc:bla:ajarec:v:61:y:2017:i:1:p:36-55
    as

    Download full text from publisher

    File URL: http://hdl.handle.net/10.1111/1467-8489.12193
    Download Restriction: Access to full text is restricted to subscribers.
    ---><---

    As the access to this document is restricted, you may want to look for a different version below or search for a different version of it.

    Other versions of this item:

    References listed on IDEAS

    as
    1. Adamson, David & Mallawaarachchi, Thilak & Quiggin, John C., 2007. "Water use and salinity in the Murray–Darling Basin: A state-contingent model," Australian Journal of Agricultural and Resource Economics, Australian Agricultural and Resource Economics Society, vol. 51(3), pages 1-19.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Amer Ait Sidhoum, 2023. "Assessing the contribution of farmers’ working conditions to productive efficiency in the presence of uncertainty, a nonparametric approach," Environment, Development and Sustainability: A Multidisciplinary Approach to the Theory and Practice of Sustainable Development, Springer, vol. 25(8), pages 8601-8622, August.
    2. Mallawaarachchi, Thilak & Auricht, Christopher & Loch, Adam & Adamson, David & Quiggin, John, 2020. "Water allocation in Australia’s Murray–Darling Basin: Managing change under heightened uncertainty," Economic Analysis and Policy, Elsevier, vol. 66(C), pages 345-369.
    3. Philippe Bontems & Celine Nauges, 2018. "Production choices with water markets and risk aversion: the role of initial allocations and forward trading," Post-Print hal-02349932, HAL.
    4. Adam Loch & Christopher Auricht & David Adamson & Luis Mateo, 2021. "Markets, mis‐direction and motives: A factual analysis of hoarding and speculation in southern Murray–Darling Basin water markets," Australian Journal of Agricultural and Resource Economics, Australian Agricultural and Resource Economics Society, vol. 65(2), pages 291-317, April.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. repec:bla:canjag:v:58:y:2010:i:s1:p:403-409 is not listed on IDEAS
    2. Peggy Schrobback & David Adamson & John Quiggin, 2009. "Turning Water into Carbon: Carbon sequestration vs. water flow in the Murray-Darling Basin," Murray-Darling Program Working Papers WP2M09, Risk and Sustainable Management Group, University of Queensland.
    3. Adamson, David & Mallawaarachchi, Thilak & Quiggin, John C., 2007. "Water use and salinity in the Murray–Darling Basin: A state-contingent model," Australian Journal of Agricultural and Resource Economics, Australian Agricultural and Resource Economics Society, vol. 51(3), pages 1-19.
    4. Bermeo, Santiago & Doole, Graeme & Austin, Darran & Fenemor, Andrew, 2016. "Waimea Plains: economics of freshwater quantity management," 2016 Conference (60th), February 2-5, 2016, Canberra, Australia 235246, Australian Agricultural and Resource Economics Society.
    5. Thomas Spencer & Tihomir Ancev & Jeff Connor, 2009. "Improving Cost Effectiveness of Irrigation Zoning for Salinity Mitigation by Introducing Offsets," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 23(10), pages 2085-2100, August.
    6. Adamson, David & Loch, Adam, 2014. "Possible negative feedbacks from ‘gold-plating’ irrigation infrastructure," Agricultural Water Management, Elsevier, vol. 145(C), pages 134-144.
    7. Crean, Jason & Parton, Kevin & Mullen, John & Jones, Randall, 2013. "Representing climatic uncertainty in agricultural models – an application of state-contingent theory," Australian Journal of Agricultural and Resource Economics, Australian Agricultural and Resource Economics Society, vol. 57(3).
    8. Adamson, David, 2010. "Climate change, Irrigation and Pests: Examining Heliothis in the Murray Darling Basin," Risk and Sustainable Management Group Working Papers 149879, University of Queensland, School of Economics.
    9. Nordblom, T.L. & Hume, I.H. & Finlayson, J.D. & Pannell, D.J. & Holland, J.E. & McClintock, A.J., 2015. "Distributional consequences of upstream tree plantations on downstream water users in a Public–Private Benefit Framework," Agricultural Systems, Elsevier, vol. 139(C), pages 271-281.
    10. Loch, Adam & Adamson, David & Mallawaarachchi, Thilak, 2013. "Hydrology and Economics in Water Management Policy under Increasing uncertainty," Risk and Sustainable Management Group Working Papers 156479, University of Queensland, School of Economics.
    11. Mallawaarachchi, Thilak & Auricht, Christopher & Loch, Adam & Adamson, David & Quiggin, John, 2020. "Water allocation in Australia’s Murray–Darling Basin: Managing change under heightened uncertainty," Economic Analysis and Policy, Elsevier, vol. 66(C), pages 345-369.
    12. Adam Loch & David Adamson, 2015. "Drought and the rebound effect: a Murray–Darling Basin example," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 79(3), pages 1429-1449, December.
    13. Nordblom, T.L. & Christy, B.P. & Finlayson, J.D. & Roberts, A.M. & Kelly, J.A., 2010. "Least cost land-use changes for targeted catchment salt load and water yield impacts in south eastern Australia," Agricultural Water Management, Elsevier, vol. 97(6), pages 811-823, June.
    14. Adamson, David & Loch, Adam & Schwabe, Kurt, 2017. "Adaptation responses to increasing drought frequency," Australian Journal of Agricultural and Resource Economics, Australian Agricultural and Resource Economics Society, vol. 61(3), July.
    15. Nordblom, Tom & Finlayson, John D. & Hume, Iain H. & Kelly, Jason A., 2009. "Supply and Demand for Water use by New Forest Plantations: a market to balance increasing upstream water use with downstream community, industry and environmental use?," Research Reports 280785, New South Wales Department of Primary Industries Research Economists.
    16. Sapino, Francesco & Pérez-Blanco, C. Dionisio & Gutiérrez-Martín, Carlos & García-Prats, Alberto & Pulido-Velazquez, Manuel, 2022. "Influence of crop-water production functions on the expected performance of water pricing policies in irrigated agriculture," Agricultural Water Management, Elsevier, vol. 259(C).
    17. Claire Settre & Jeff Connor & Sarah Ann Wheeler, 2017. "Reviewing the Treatment of Uncertainty in Hydro-economic Modeling of the Murray–Darling Basin, Australia," Water Economics and Policy (WEP), World Scientific Publishing Co. Pte. Ltd., vol. 3(03), pages 1-35, July.
    18. Griffith, Marnie & Codner, Gary & Weinmann, Erwin & Schreider, Sergei, 2009. "Modelling hydroclimatic uncertainty and short-run irrigator decision making: the Goulburn system," Australian Journal of Agricultural and Resource Economics, Australian Agricultural and Resource Economics Society, vol. 53(4), pages 1-20.
    19. C. D. Pérez-Blanco & E. E. Koks & E. Calliari & J. Mysiak, 2018. "Economic Impacts of Irrigation-Constrained Agriculture in the Lower Po Basin," Water Economics and Policy (WEP), World Scientific Publishing Co. Pte. Ltd., vol. 4(01), pages 1-38, January.
    20. Peggy Schrobback & David Adamson & John Quiggin, 2011. "Turning Water into Carbon: Carbon Sequestration and Water Flow in the Murray–Darling Basin," Environmental & Resource Economics, Springer;European Association of Environmental and Resource Economists, vol. 49(1), pages 23-45, May.
    21. Adamson, David & Loch, Adam, 2013. "Natural capital and climate change: Possible negative sustainability impacts from 'gold plating' irrigation infrastructure," Risk and Sustainable Management Group Working Papers 156480, University of Queensland, School of Economics.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:bla:ajarec:v:61:y:2017:i:1:p:36-55. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Wiley Content Delivery (email available below). General contact details of provider: https://edirc.repec.org/data/aaresea.html .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.