Forecasting Russian Macroeconomic Indicators Based on Information from News and Search Queries
Author
Abstract
Suggested Citation
DOI: 10.31477/rjmf.202004.75
Download full text from publisher
References listed on IDEAS
- Hyunyoung Choi & Hal Varian, 2012. "Predicting the Present with Google Trends," The Economic Record, The Economic Society of Australia, vol. 88(s1), pages 2-9, June.
- Jason Bram & Sydney C. Ludvigson, 1998.
"Does consumer confidence forecast household expenditure? a sentiment index horse race,"
Economic Policy Review, Federal Reserve Bank of New York, vol. 4(Jun), pages 59-78.
- Jason Bram & Sydney C. Ludvigson, 1997. "Does consumer confidence forecast household expenditure?: A sentiment index horse race," Research Paper 9708, Federal Reserve Bank of New York.
- Berg Lennart & Bergström Reinhold, 1996. "Consumer Confidence and Consumption in Sweden," Working Paper Series 1996:7, Uppsala University, Department of Economics.
- Mikhail Gareev, 2020. "Use of Machine Learning Methods to Forecast Investment in Russia," Russian Journal of Money and Finance, Bank of Russia, vol. 79(1), pages 35-56, March.
- Scott R. Baker & Nicholas Bloom & Steven J. Davis, 2016.
"Measuring Economic Policy Uncertainty,"
The Quarterly Journal of Economics, President and Fellows of Harvard College, vol. 131(4), pages 1593-1636.
- Scott R. Baker & Nicholas Bloom & Steven J. Davis, 2015. "Measuring Economic Policy Uncertainty," NBER Working Papers 21633, National Bureau of Economic Research, Inc.
- Scott R. Baker & Nicholas Bloom & Steven J. Davis, 2015. "Measuring Economic Policy Uncertainty," CEP Discussion Papers dp1379, Centre for Economic Performance, LSE.
- Baker, Scott R. & Bloom, Nicholas & Davis, Steven J., 2015. "Measuring economic policy uncertainty," LSE Research Online Documents on Economics 64986, London School of Economics and Political Science, LSE Library.
- Davis, Steven & Bloom, Nicholas & Baker, Scott, 2015. "Measuring Economic Policy Uncertainty," CEPR Discussion Papers 10900, C.E.P.R. Discussion Papers.
- Scott R. Baker & Nicholas Bloom & Steven J. Davis, 2015. "Measuring Economic Policy Uncertainty," Economics Working Papers 15111, Hoover Institution, Stanford University.
- Ksenia Yakovleva, 2017. "Text Mining-based Economic Activity Estimates," Bank of Russia Working Paper Series wps25, Bank of Russia.
- I. Goloshchapova & M. Andreev., 2017. "Measuring inflation expectations of the Russian population with the help of machine learning," VOPROSY ECONOMIKI, N.P. Redaktsiya zhurnala "Voprosy Economiki", vol. 6.
- Atsuo Utaka, 2003. "Confidence and the real economy - the Japanese case," Applied Economics, Taylor & Francis Journals, vol. 35(3), pages 337-342.
- Diebold, Francis X & Mariano, Roberto S, 2002.
"Comparing Predictive Accuracy,"
Journal of Business & Economic Statistics, American Statistical Association, vol. 20(1), pages 134-144, January.
- Diebold, Francis X & Mariano, Roberto S, 1995. "Comparing Predictive Accuracy," Journal of Business & Economic Statistics, American Statistical Association, vol. 13(3), pages 253-263, July.
- Francis X. Diebold & Roberto S. Mariano, 1994. "Comparing Predictive Accuracy," NBER Technical Working Papers 0169, National Bureau of Economic Research, Inc.
- Tom Doan, "undated". "DMARIANO: RATS procedure to compute Diebold-Mariano Forecast Comparison Test," Statistical Software Components RTS00055, Boston College Department of Economics.
- Ksenia Yakovleva, 2018. "Text Mining-based Economic Activity Estimation," Russian Journal of Money and Finance, Bank of Russia, vol. 77(4), pages 26-41, December.
- McLaren, Nick & Shanbhogue, Rachana, 2011. "Using internet search data as economic indicators," Bank of England Quarterly Bulletin, Bank of England, vol. 51(2), pages 134-140.
- M. Stolbov., 2011. "Statistics of Search Queries in Google as an Indicator of Financial Conditions," VOPROSY ECONOMIKI, N.P. Redaktsiya zhurnala "Voprosy Economiki", vol. 11.
- Jeremy Ginsberg & Matthew H. Mohebbi & Rajan S. Patel & Lynnette Brammer & Mark S. Smolinski & Larry Brilliant, 2009. "Detecting influenza epidemics using search engine query data," Nature, Nature, vol. 457(7232), pages 1012-1014, February.
- Zhi Da & Joseph Engelberg & Pengjie Gao, 2011. "In Search of Attention," Journal of Finance, American Finance Association, vol. 66(5), pages 1461-1499, October.
Citations
Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
Cited by:
- Mikhaylov, Dmitry, 2023. "Macroeconomic Forecasting with the Use of News Data," Working Papers w20220250, Russian Presidential Academy of National Economy and Public Administration.
Most related items
These are the items that most often cite the same works as this one and are cited by the same works as this one.- D’Amuri, Francesco & Marcucci, Juri, 2017.
"The predictive power of Google searches in forecasting US unemployment,"
International Journal of Forecasting, Elsevier, vol. 33(4), pages 801-816.
- Francesco D'Amuri & Juri Marcucci, 2012. "The predictive power of Google searches in forecasting unemployment," Temi di discussione (Economic working papers) 891, Bank of Italy, Economic Research and International Relations Area.
- Qadan, Mahmoud & Nama, Hazar, 2018. "Investor sentiment and the price of oil," Energy Economics, Elsevier, vol. 69(C), pages 42-58.
- González-Fernández, Marcos & González-Velasco, Carmen, 2018. "Can Google econometrics predict unemployment? Evidence from Spain," Economics Letters, Elsevier, vol. 170(C), pages 42-45.
- Chauvet, Marcelle & Gabriel, Stuart & Lutz, Chandler, 2016. "Mortgage default risk: New evidence from internet search queries," Journal of Urban Economics, Elsevier, vol. 96(C), pages 91-111.
- Anastasiou, Dimitris & Ballis, Antonis & Drakos, Konstantinos, 2022. "Constructing a positive sentiment index for COVID-19: Evidence from G20 stock markets," International Review of Financial Analysis, Elsevier, vol. 81(C).
- Takumi Ito & Motoki Masuda & Ayaka Naito & Fumiko Takeda, 2021. "Application of Google Trends‐based sentiment index in exchange rate prediction," Journal of Forecasting, John Wiley & Sons, Ltd., vol. 40(7), pages 1154-1178, November.
- Götz, Thomas B. & Knetsch, Thomas A., 2019.
"Google data in bridge equation models for German GDP,"
International Journal of Forecasting, Elsevier, vol. 35(1), pages 45-66.
- Götz, Thomas B. & Knetsch, Thomas A., 2017. "Google data in bridge equation models for German GDP," Discussion Papers 18/2017, Deutsche Bundesbank.
- Coble, David & Pincheira, Pablo, 2017. "Nowcasting Building Permits with Google Trends," MPRA Paper 76514, University Library of Munich, Germany.
- Afkhami, Mohamad & Ghoddusi, Hamed & Rafizadeh, Nima, 2021. "Google Search Explains Your Gasoline Consumption!," Energy Economics, Elsevier, vol. 99(C).
- Bangwayo-Skeete, Prosper F. & Skeete, Ryan W., 2015. "Can Google data improve the forecasting performance of tourist arrivals? Mixed-data sampling approach," Tourism Management, Elsevier, vol. 46(C), pages 454-464.
- Lolić, Ivana & Matošec, Marina & Sorić, Petar, 2024. "DIY google trends indicators in social sciences: A methodological note," Technology in Society, Elsevier, vol. 77(C).
- Jichang Dong & Wei Dai & Ying Liu & Lean Yu & Jie Wang, 2019. "Forecasting Chinese Stock Market Prices using Baidu Search Index with a Learning-Based Data Collection Method," International Journal of Information Technology & Decision Making (IJITDM), World Scientific Publishing Co. Pte. Ltd., vol. 18(05), pages 1605-1629, September.
- Hector H. Sandoval & Anita N. Walsh, 2021. "The role of consumer confidence in forecasting consumption, evidence from Florida," Southern Economic Journal, John Wiley & Sons, vol. 88(2), pages 757-788, October.
- Konstantinos N. Konstantakis & Despoina Paraskeuopoulou & Panayotis G. Michaelides & Efthymios G. Tsionas, 2021. "Bank deposits and Google searches in a crisis economy: Bayesian non‐linear evidence for Greece (2009–2015)," International Journal of Finance & Economics, John Wiley & Sons, Ltd., vol. 26(4), pages 5408-5424, October.
- Anastasiou, Dimitrios & Drakos, Konstantinos, 2021. "European depositors’ behavior and crisis sentiment," Journal of Economic Behavior & Organization, Elsevier, vol. 184(C), pages 117-136.
- Basistha, Arabinda & Kurov, Alexander & Wolfe, Marketa Halova, 2019. "Volatility Forecasting: The Role of Internet Search Activity and Implied Volatility," MPRA Paper 111037, University Library of Munich, Germany.
- Gomes, Pedro & Taamouti, Abderrahim, 2016. "In search of the determinants of European asset market comovements," International Review of Economics & Finance, Elsevier, vol. 44(C), pages 103-117.
- Kučerová, Zuzana & Pakši, Daniel & Koňařík, Vojtěch, 2024. "Macroeconomic fundamentals and attention: What drives european consumers’ inflation expectations?," Economic Systems, Elsevier, vol. 48(1).
- Wohlfarth, Paul, 2018.
"Measuring the impact of monetary policy attention on global asset volatility using search data,"
Economics Letters, Elsevier, vol. 173(C), pages 15-18.
- Paul Wohlfarth, 2018. "Measuring the Impact of Monetary Policy Attention on Global Asset Volatility Using Search Data," Birkbeck Working Papers in Economics and Finance 1803, Birkbeck, Department of Economics, Mathematics & Statistics.
- Yang, Xin & Pan, Bing & Evans, James A. & Lv, Benfu, 2015. "Forecasting Chinese tourist volume with search engine data," Tourism Management, Elsevier, vol. 46(C), pages 386-397.
More about this item
Keywords
text analysis; sentiment analysis; economic uncertainty index; data analysis; machine learning;All these keywords.
JEL classification:
- C43 - Mathematical and Quantitative Methods - - Econometric and Statistical Methods: Special Topics - - - Index Numbers and Aggregation
- C55 - Mathematical and Quantitative Methods - - Econometric Modeling - - - Large Data Sets: Modeling and Analysis
- C81 - Mathematical and Quantitative Methods - - Data Collection and Data Estimation Methodology; Computer Programs - - - Methodology for Collecting, Estimating, and Organizing Microeconomic Data; Data Access
Statistics
Access and download statisticsCorrections
All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:bkr:journl:v:79:y:2020:i:4:p:75-97. See general information about how to correct material in RePEc.
If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.
If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .
If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.
For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Olga Kuvshinova (email available below). General contact details of provider: https://edirc.repec.org/data/cbrgvru.html .
Please note that corrections may take a couple of weeks to filter through the various RePEc services.