IDEAS home Printed from https://ideas.repec.org/a/bfr/fisrev/20162016.html
   My bibliography  Save this article

High-frequency trading, geographical concerns and the curvature of the Earth

Author

Listed:
  • Declerck, F.

Abstract

For high-frequency traders, fragmentation, information, speed and proximity to markets matter. On today’s financial markets each nanosecond may count; therefore, an arms race is more likely as traders, venues or investors compete to see who can be fastest. The theoretical literature also demonstrates that fast traders can cause more adverse selection against slower traders and can impair long-run asset price informativeness. In this set-up, regulators and empiricists are now facing major challenges. Most evidence suggests that high-speed trading has led to improvements in liquidity and price discovery. Trading on advance information is nonetheless significant. Finally, the “slice and dice” trading strategy implemented by institutional investors does not seem fully appropriate to avoid the risk of detection by fast traders. Indeed, if, during the first hour following the order submission, high-speed traders act as market makers, they then increase trading costs for the institutional trader.

Suggested Citation

  • Declerck, F., 2016. "High-frequency trading, geographical concerns and the curvature of the Earth," Financial Stability Review, Banque de France, issue 20, pages 153-160, April.
  • Handle: RePEc:bfr:fisrev:2016:20:16
    as

    Download full text from publisher

    File URL: https://publications.banque-france.fr/sites/default/files/medias/documents/financial-stability-review-20_2016-04.pdf
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Bruno Biais & Fany Declerck & Sophie Moinas, 2016. "Who supplies liquidity, how and when?," BIS Working Papers 563, Bank for International Settlements.
    2. Biais, Bruno & Foucault, Thierry & Moinas, Sophie, 2015. "Equilibrium fast trading," Journal of Financial Economics, Elsevier, vol. 116(2), pages 292-313.
    3. Albert J. Menkveld & Marius A. Zoican, 2017. "Need for Speed? Exchange Latency and Liquidity," The Review of Financial Studies, Society for Financial Studies, vol. 30(4), pages 1188-1228.
    4. Terrence Hendershott & Charles M. Jones & Albert J. Menkveld, 2011. "Does Algorithmic Trading Improve Liquidity?," Journal of Finance, American Finance Association, vol. 66(1), pages 1-33, February.
    5. Grossman, Sanford J & Stiglitz, Joseph E, 1980. "On the Impossibility of Informationally Efficient Markets," American Economic Review, American Economic Association, vol. 70(3), pages 393-408, June.
    6. Jonathan Brogaard & Terrence Hendershott & Ryan Riordan, 2014. "High-Frequency Trading and Price Discovery," The Review of Financial Studies, Society for Financial Studies, vol. 27(8), pages 2267-2306.
    7. Hasbrouck, Joel & Saar, Gideon, 2013. "Low-latency trading," Journal of Financial Markets, Elsevier, vol. 16(4), pages 646-679.
    8. Vincent Van Kervel & Albert J. Menkveld, 2019. "High‐Frequency Trading around Large Institutional Orders," Journal of Finance, American Finance Association, vol. 74(3), pages 1091-1137, June.
    9. Brian M. Weller, 2018. "Does Algorithmic Trading Reduce Information Acquisition?," The Review of Financial Studies, Society for Financial Studies, vol. 31(6), pages 2184-2226.
    10. Amber Anand & Paul Irvine & Andy Puckett & Kumar Venkataraman, 2012. "Performance of Institutional Trading Desks: An Analysis of Persistence in Trading Costs," The Review of Financial Studies, Society for Financial Studies, vol. 25(2), pages 557-598.
    11. Fany Declerck & Laurence Lescourret, 2015. "Dark pools et trading haute fréquence : une évolution utile ?," Revue d'économie financière, Association d'économie financière, vol. 0(4), pages 113-126.
    12. Dugast, Jérôme & Foucault, Thierry, 2018. "Data abundance and asset price informativeness," Journal of Financial Economics, Elsevier, vol. 130(2), pages 367-391.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Aliyev, Nihad & Huseynov, Fariz & Rzayev, Khaladdin, 2022. "Algorithmic trading and investment-to-price sensitivity," LSE Research Online Documents on Economics 118844, London School of Economics and Political Science, LSE Library.
    2. Nicholas Hirschey, 2021. "Do High-Frequency Traders Anticipate Buying and Selling Pressure?," Management Science, INFORMS, vol. 67(6), pages 3321-3345, June.
    3. Park, Seongkyu Gilbert & Ryu, Doojin, 2019. "Speed and trading behavior in an order-driven market," Pacific-Basin Finance Journal, Elsevier, vol. 53(C), pages 145-164.
    4. Zhou, Hao & Kalev, Petko S., 2019. "Algorithmic and high frequency trading in Asia-Pacific, now and the future," Pacific-Basin Finance Journal, Elsevier, vol. 53(C), pages 186-207.
    5. Rzayev, Khaladdin & Ibikunle, Gbenga & Steffen, Tom, 2023. "The market quality implications of speed in cross-platform trading: Evidence from Frankfurt-London microwave," Journal of Financial Markets, Elsevier, vol. 66(C).
    6. Friederich, Sylvain & Payne, Richard, 2015. "Order-to-trade ratios and market liquidity," Journal of Banking & Finance, Elsevier, vol. 50(C), pages 214-223.
    7. Bellia, Mario & Pelizzon, Loriana & Subrahmanyam, Marti & Uno, Jun & Yuferova, Darya, 2017. "Coming early to the party," SAFE Working Paper Series 182, Leibniz Institute for Financial Research SAFE.
      • Mario Bellia & Loriana Pelizzon & Marti G. Subrahmanyam & Jun Uno & Darya Yuferova, 2020. "Coming early to the party," Working Papers 2020:11, Department of Economics, University of Venice "Ca' Foscari".
    8. Breedon, Francis & Chen, Louisa & Ranaldo, Angelo & Vause, Nicholas, 2023. "Judgment day: Algorithmic trading around the Swiss franc cap removal," Journal of International Economics, Elsevier, vol. 140(C).
    9. Donald B. Keim & Massimo Massa & Bastian von Beschwitz, 2018. "First to \"Read\" the News: New Analytics and Algorithmic Trading," International Finance Discussion Papers 1233, Board of Governors of the Federal Reserve System (U.S.).
    10. Aït-Sahalia, Yacine & Brunetti, Celso, 2020. "High frequency traders and the price process," Journal of Econometrics, Elsevier, vol. 217(1), pages 20-45.
    11. Zheng, Jiayi & Zhu, Yushu, 2023. "Algorithmic trading and block ownership initiation: An information perspective," The British Accounting Review, Elsevier, vol. 55(4).
    12. Foucault, Thierry & Moinas, Sophie, 2018. "Is Trading Fast Dangerous?," TSE Working Papers 18-881, Toulouse School of Economics (TSE).
    13. Rzayev, Khaladdin & Ibikunle, Gbenga & Steffen, Tom, 2023. "The market quality implications of speed in cross-platform trading: evidence from Frankfurt-London microwave," LSE Research Online Documents on Economics 119989, London School of Economics and Political Science, LSE Library.
    14. Chordia, Tarun & Miao, Bin, 2020. "Market efficiency in real time: Evidence from low latency activity around earnings announcements," Journal of Accounting and Economics, Elsevier, vol. 70(2).
    15. Rif, Alexandru & Utz, Sebastian, 2021. "Short-term stock price reversals after extreme downward price movements," The Quarterly Review of Economics and Finance, Elsevier, vol. 81(C), pages 123-133.
    16. Nawn, Samarpan & Banerjee, Ashok, 2019. "Do the limit orders of proprietary and agency algorithmic traders discover or obscure security prices?," Journal of Empirical Finance, Elsevier, vol. 53(C), pages 109-125.
    17. Shiyang Huang & Bart Zhou Yueshen, 2021. "Speed Acquisition," Management Science, INFORMS, vol. 67(6), pages 3492-3518, June.
    18. Markus Baldauf & Joshua Mollner, 2020. "High‐Frequency Trading and Market Performance," Journal of Finance, American Finance Association, vol. 75(3), pages 1495-1526, June.
    19. Cox, Justin & Woods, Donovan, 2023. "COVID-19 and market structure dynamics," Journal of Banking & Finance, Elsevier, vol. 147(C).
    20. Sánchez Serrano Antonio, 2020. "High-Frequency Trading and Systemic Risk: A Structured Review of Findings and Policies," Review of Economics, De Gruyter, vol. 71(3), pages 169-195, December.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:bfr:fisrev:2016:20:16. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Michael brassart (email available below). General contact details of provider: https://edirc.repec.org/data/bdfgvfr.html .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.