IDEAS home Printed from https://ideas.repec.org/a/bfr/bullbf/201319210.html
   My bibliography  Save this article

Pétrole et macroéconomie - Synthèse de l’atelier Banque de France du 14 novembre 2012

Author

Listed:
  • DELLE CHIAIE, S.

Abstract

Lors du séminaire organisé par la Banque de France plusieurs chercheurs parmi les plus influents ont discuté les travaux analytiques récents sur les causes et les effets des fluctuations des prix du pétrole.

Suggested Citation

  • Delle Chiaie, S., 2013. "Pétrole et macroéconomie - Synthèse de l’atelier Banque de France du 14 novembre 2012," Bulletin de la Banque de France, Banque de France, issue 192, pages 111-116.
  • Handle: RePEc:bfr:bullbf:2013:192:10
    as

    Download full text from publisher

    File URL: https://publications.banque-france.fr/sites/default/files/medias/documents/bulletin-de-la-banque-de-france_192_2013-t2.pdf
    Download Restriction: no
    ---><---

    Other versions of this item:

    References listed on IDEAS

    as
    1. Ron Alquist & Lutz Kilian, 2010. "What do we learn from the price of crude oil futures?," Journal of Applied Econometrics, John Wiley & Sons, Ltd., vol. 25(4), pages 539-573.
    2. Bassam Fattouh, Lutz Kilian, and Lavan Mahadeva, 2013. "The Role of Speculation in Oil Markets: What Have We Learned So Far?," The Energy Journal, International Association for Energy Economics, vol. 0(Number 3).
    3. Hadi Salehi Esfahani & Kamiar Mohaddes & M. Hashem Pesaran, 2014. "An Empirical Growth Model For Major Oil Exporters," Journal of Applied Econometrics, John Wiley & Sons, Ltd., vol. 29(1), pages 1-21, January.
    4. Christiane Baumeister & Lutz Kilian, 2014. "Real-Time Analysis of Oil Price Risks Using Forecast Scenarios," IMF Economic Review, Palgrave Macmillan;International Monetary Fund, vol. 62(1), pages 119-145, April.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Wang, Yudong & Liu, Li & Diao, Xundi & Wu, Chongfeng, 2015. "Forecasting the real prices of crude oil under economic and statistical constraints," Energy Economics, Elsevier, vol. 51(C), pages 599-608.
    2. Kilian, Lutz & Lee, Thomas K., 2014. "Quantifying the speculative component in the real price of oil: The role of global oil inventories," Journal of International Money and Finance, Elsevier, vol. 42(C), pages 71-87.
    3. Georges Prat & Remzi Uctum, 2021. "Modeling ex-ante risk premia in the oil market," Working Papers hal-03508699, HAL.
    4. Doga Bilgin & Reinhard Ellwanger, 2019. "The Simple Economics of Global Fuel Consumption," Staff Working Papers 19-35, Bank of Canada.
    5. Wang, Yudong & Liu, Li & Wu, Chongfeng, 2017. "Forecasting the real prices of crude oil using forecast combinations over time-varying parameter models," Energy Economics, Elsevier, vol. 66(C), pages 337-348.
    6. Jarrett, Uchechukwu & Mohaddes, Kamiar & Mohtadi, Hamid, 2019. "Oil price volatility, financial institutions and economic growth," Energy Policy, Elsevier, vol. 126(C), pages 131-144.
    7. Duc Huynh, Toan Luu & Burggraf, Tobias & Nasir, Muhammad Ali, 2020. "Financialisation of natural resources & instability caused by risk transfer in commodity markets," Resources Policy, Elsevier, vol. 66(C).
    8. Sung Je Byun, 2017. "Speculation in Commodity Futures Markets, Inventories and the Price of Crude Oil," The Energy Journal, International Association for Energy Economics, vol. 0(Number 5).
    9. Baumeister, Christiane & Kilian, Lutz & Lee, Thomas K., 2014. "Are there gains from pooling real-time oil price forecasts?," Energy Economics, Elsevier, vol. 46(S1), pages 33-43.
    10. Christiane Baumeister & Lutz Kilian, 2015. "Forecasting the Real Price of Oil in a Changing World: A Forecast Combination Approach," Journal of Business & Economic Statistics, Taylor & Francis Journals, vol. 33(3), pages 338-351, July.
    11. Jamal Bouoiyour & Refk Selmi, 2015. "Exchange volatility and export performance in Egypt: New insights from wavelet decomposition and optimal GARCH model," The Journal of International Trade & Economic Development, Taylor & Francis Journals, vol. 24(2), pages 201-227, March.
    12. Krzysztof Drachal, 2018. "Determining Time-Varying Drivers of Spot Oil Price in a Dynamic Model Averaging Framework," Energies, MDPI, vol. 11(5), pages 1-24, May.
    13. Joëts, Marc, 2015. "Heterogeneous beliefs, regret, and uncertainty: The role of speculation in energy price dynamics," European Journal of Operational Research, Elsevier, vol. 247(1), pages 204-215.
    14. Joëts, Marc & Mignon, Valérie & Razafindrabe, Tovonony, 2017. "Does the volatility of commodity prices reflect macroeconomic uncertainty?," Energy Economics, Elsevier, vol. 68(C), pages 313-326.
    15. Olivier Rousse & Benoît Sévi, 2017. "Informed Trading in Oil-Futures Market," Working Papers hal-01460186, HAL.
    16. Jean-Pierre Allegret & Cécile Couharde & Valérie Mignon & Tovonony Razafindrabe, 2017. "Oil currencies in the face of oil shocks: what can be learned from time-varying specifications?," Applied Economics, Taylor & Francis Journals, vol. 49(18), pages 1774-1793, April.
    17. Olivier Rousse & Benoît Sévi, 2016. "Informed Trading in Oil-Futures Market," Working Papers hal-01410093, HAL.
    18. Naser, Hanan, 2016. "Estimating and forecasting the real prices of crude oil: A data rich model using a dynamic model averaging (DMA) approach," Energy Economics, Elsevier, vol. 56(C), pages 75-87.
    19. Kyritsis, Evangelos & Serletis, Apostolos, 2018. "The zero lower bound and market spillovers: Evidence from the G7 and Norway," Research in International Business and Finance, Elsevier, vol. 44(C), pages 100-123.
    20. Antonakakis, Nikolaos & Chatziantoniou, Ioannis & Filis, George, 2017. "Oil shocks and stock markets: Dynamic connectedness under the prism of recent geopolitical and economic unrest," International Review of Financial Analysis, Elsevier, vol. 50(C), pages 1-26.

    More about this item

    Keywords

    fluctuations des cours du pétrole; spéculation; fondamentaux du marché; prévisions.;
    All these keywords.

    JEL classification:

    • C53 - Mathematical and Quantitative Methods - - Econometric Modeling - - - Forecasting and Prediction Models; Simulation Methods
    • G15 - Financial Economics - - General Financial Markets - - - International Financial Markets
    • Q43 - Agricultural and Natural Resource Economics; Environmental and Ecological Economics - - Energy - - - Energy and the Macroeconomy
    • Q47 - Agricultural and Natural Resource Economics; Environmental and Ecological Economics - - Energy - - - Energy Forecasting

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:bfr:bullbf:2013:192:10. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Michael brassart (email available below). General contact details of provider: https://edirc.repec.org/data/bdfgvfr.html .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.