IDEAS home Printed from https://ideas.repec.org/a/bes/jnlbes/v27i2y2009p251-265.html
   My bibliography  Save this article

Assessing Market Microstructure Effects via Realized Volatility Measures with an Application to the Dow Jones Industrial Average Stocks

Author

Listed:
  • Awartani, Basel
  • Corradi, Valentina
  • Distaso, Walter

Abstract

No abstract is available for this item.

Suggested Citation

  • Awartani, Basel & Corradi, Valentina & Distaso, Walter, 2009. "Assessing Market Microstructure Effects via Realized Volatility Measures with an Application to the Dow Jones Industrial Average Stocks," Journal of Business & Economic Statistics, American Statistical Association, vol. 27(2), pages 251-265.
  • Handle: RePEc:bes:jnlbes:v:27:i:2:y:2009:p:251-265
    as

    Download full text from publisher

    File URL: http://pubs.amstat.org/doi/abs/10.1198/jbes.2009.0018
    File Function: full text
    Download Restriction: Access to full text is restricted to subscribers.
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Degiannakis, Stavros & Floros, Christos, 2016. "Intra-day realized volatility for European and USA stock indices," Global Finance Journal, Elsevier, vol. 29(C), pages 24-41.
    2. Chen, Richard Y. & Mykland, Per A., 2017. "Model-free approaches to discern non-stationary microstructure noise and time-varying liquidity in high-frequency data," Journal of Econometrics, Elsevier, vol. 200(1), pages 79-103.
    3. Huong Le & Andros Gregoriou, 2020. "How Do You Capture Liquidity? A Review Of The Literature On Low‐Frequency Stock Liquidity," Journal of Economic Surveys, Wiley Blackwell, vol. 34(5), pages 1170-1186, December.
    4. Richard Y. Chen & Per A. Mykland, 2015. "Model-Free Approaches to Discern Non-Stationary Microstructure Noise and Time-Varying Liquidity in High-Frequency Data," Papers 1512.06159, arXiv.org, revised Oct 2018.
    5. Fang, Tong & Lee, Tae-Hwy & Su, Zhi, 2020. "Predicting the long-term stock market volatility: A GARCH-MIDAS model with variable selection," Journal of Empirical Finance, Elsevier, vol. 58(C), pages 36-49.
    6. Ma, Feng & Wahab, M.I.M. & Zhang, Yaojie, 2019. "Forecasting the U.S. stock volatility: An aligned jump index from G7 stock markets," Pacific-Basin Finance Journal, Elsevier, vol. 54(C), pages 132-146.
    7. Selma Chaker, 2013. "Volatility and Liquidity Costs," Staff Working Papers 13-29, Bank of Canada.
    8. Bandi, Federico & Corradi, Valentina & Moloche, Guillermo, 2009. "Bandwidth selection for continuous-time Markov processes," MPRA Paper 43682, University Library of Munich, Germany.
    9. Julien Chevallier & Benoît Sévi, 2011. "On the volatility-volume relationship in energy futures markets using intraday data," Working Papers hal-04140997, HAL.
    10. Tong Fang & Deyu Miao & Zhi Su & Libo Yin, 2023. "Uncertainty‐driven oil volatility risk premium and international stock market volatility forecasting," Journal of Forecasting, John Wiley & Sons, Ltd., vol. 42(4), pages 872-904, July.
    11. Bandi, Federico M. & Russell, Jeffrey R., 2011. "Market microstructure noise, integrated variance estimators, and the accuracy of asymptotic approximations," Journal of Econometrics, Elsevier, vol. 160(1), pages 145-159, January.
    12. Chevallier, Julien, 2013. "Variance risk-premia in CO2 markets," Economic Modelling, Elsevier, vol. 31(C), pages 598-605.
    13. Dong, Yingjie & Tse, Yiu-Kuen, 2017. "On estimating market microstructure noise variance," Economics Letters, Elsevier, vol. 150(C), pages 59-62.
    14. Yiqi Liu & Qiang Liu & Zhi Liu & Deng Ding, 2017. "Determining the integrated volatility via limit order books with multiple records," Quantitative Finance, Taylor & Francis Journals, vol. 17(11), pages 1697-1714, November.
    15. Bibinger, Markus, 2012. "An estimator for the quadratic covariation of asynchronously observed Itô processes with noise: Asymptotic distribution theory," Stochastic Processes and their Applications, Elsevier, vol. 122(6), pages 2411-2453.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:bes:jnlbes:v:27:i:2:y:2009:p:251-265. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Christopher F. Baum (email available below). General contact details of provider: http://www.amstat.org/publications/jbes/index.cfm?fuseaction=main .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.