IDEAS home Printed from https://ideas.repec.org/a/aza/airwa0/y2021v1i2p173-184.html
   My bibliography  Save this article

Step by step: A playbook for AI innovation within commercial real estate organisations

Author

Listed:
  • Mcgrath, Patrick

    (Chief Information Officer and Head of Client Technologies, Savills, USA)

  • Morrison, David

    (Savills, USA)

  • Johnson, Jess

    (Savills, USA)

  • Schuham, Sara

    (Savills, USA)

Abstract

Commercial real estate (CRE) lease agreements contain a treasure trove of untapped insights into one of the world’s largest asset classes. With commercial leases being the legal instrument for executing and documenting the terms and conditions of hundreds of billions of dollars of CRE transactions each year, the aggregate data housed in these agreements has the potential to inform valuable insights across the world’s largest real estate markets. Leases traditionally exist, however, only as paper copies or electronic PDFs, requiring large investments of time and human capital to read, understand, harvest and structure the data from their pages. CRE companies are in a unique position to leverage artificial intelligence (AI) and machine learning (ML) techniques to crack the code on these leases and unlock significant value through digital insights across the marketplace. Pioneering companies will need to surmount several obstacles that have long deterred CRE organisations from embracing these automated workflows. The sheer complexity and variety of the documents’ formats, structure and terms, the disaggregation of these documents among market participants, and the general disorganisation of the participants’ systems for storing them are all serious challenges. Meanwhile, the investment of time and resources necessary to train an algorithm sophisticated enough to navigate these challenges is a significant ask. This paper provides a playbook of best practices for surmounting these obstacles and achieving successful integration of ML–AI techniques in the CRE industry, enabling internal efficiencies and new avenues of value creation. The paper analyses a case where a CRE service provider was able to get buy-in from stakeholders by defining a project roadmap focused on upskilling pre-existing human capital investments, ultimately creating a business case to leverage ML–AI techniques to enhance data structuring workflows. The results of this project showed that the real value derived from these technologies did not come from the outputs or cost savings alone. The test project created a competitive advantage for the company by pairing the technology with a skilled team. The team brought a ‘product mindset’ focused not only on learning and developing the technology, but on continually finding new and better ways to use the technology to create a valuable service offering for occupier clients.

Suggested Citation

  • Mcgrath, Patrick & Morrison, David & Johnson, Jess & Schuham, Sara, 2021. "Step by step: A playbook for AI innovation within commercial real estate organisations," Journal of AI, Robotics & Workplace Automation, Henry Stewart Publications, vol. 1(2), pages 173-184, December.
  • Handle: RePEc:aza:airwa0:y:2021:v:1:i:2:p:173-184
    as

    Download full text from publisher

    File URL: https://hstalks.com/article/6740/download/
    Download Restriction: Requires a paid subscription for full access.

    File URL: https://hstalks.com/article/6740/
    Download Restriction: Requires a paid subscription for full access.
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    More about this item

    Keywords

    commercial real estate (CRE); artificial intelligence (AI); data structuring;
    All these keywords.

    JEL classification:

    • M15 - Business Administration and Business Economics; Marketing; Accounting; Personnel Economics - - Business Administration - - - IT Management
    • G2 - Financial Economics - - Financial Institutions and Services

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:aza:airwa0:y:2021:v:1:i:2:p:173-184. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Henry Stewart Talks (email available below). General contact details of provider: .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.