IDEAS home Printed from https://ideas.repec.org/a/aza/airwa0/y2021v1i1p18-33.html
   My bibliography  Save this article

Towards a capability assessment model for the comprehension and adoption of AI in organisations

Author

Listed:
  • Butler, Tom

    (Department of Business Information Systems, University College Cork, Cork City, Ireland)

  • Espinoza-Limón, Angelina

    (Department of Business Information Systems, University College Cork, Cork City, Ireland)

  • Seppälä, Selja

    (Department of Business Information Systems, University College Cork, Cork City, Ireland)

Abstract

The comprehension and adoption of artificial intelligence (AI) are beset with practical and ethical problems. This paper presents a five-level AI capability assessment model (AI-CAM) and a related AI capabilities matrix (AI-CM) to assist practitioners in AI comprehension and adoption. These practical tools were developed with business executives, technologists and other organisational stakeholders in mind. They are founded on a comprehensive conception of AI compared with those in other AI adoption models and are also open-source artefacts. Thus, the AI-CAM and AI-CM present an accessible resource to help inform organisational decision makers on the capability requirements for: 1) AI-based data analytics use cases based on machine learning technologies; 2) knowledge representation to engineer and represent data, information and knowledge using semantic technologies; and 3) AI-based solutions that seek to emulate human reasoning and decision making. The AI-CAM covers the core capability dimensions (business, data, technology, organisation, AI skills, risks and ethical considerations) required at the five levels of capability maturity to achieve optimal use of AI in organisations. The AI-CM details the related individual and team-level capabilities needed to reach each level in organisational AI capability; it therefore extends and enriches existing perspectives by introducing knowledge and skills requirements at all levels of an organisation. It posits three levels of AI proficiency: 1) basic, for operational users who interact with AI and participate in AI adoption; 2) advanced, for professionals who are charged with comprehending AI and developing related business models and strategies; and 3) expert, for computer engineers, data scientists and knowledge engineers participating in the design and implementation of AI-based technologies to support business use cases. In conclusion, the AI-CAM and AI-CM present a valuable resource for practitioners, businesses and technologists looking to innovate using AI technologies and maximise the return to their organisations.

Suggested Citation

  • Butler, Tom & Espinoza-Limón, Angelina & Seppälä, Selja, 2021. "Towards a capability assessment model for the comprehension and adoption of AI in organisations," Journal of AI, Robotics & Workplace Automation, Henry Stewart Publications, vol. 1(1), pages 18-33, September.
  • Handle: RePEc:aza:airwa0:y:2021:v:1:i:1:p:18-33
    as

    Download full text from publisher

    File URL: https://hstalks.com/article/6486/download/
    Download Restriction: Requires a paid subscription for full access.

    File URL: https://hstalks.com/article/6486/
    Download Restriction: Requires a paid subscription for full access.
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    More about this item

    Keywords

    artificial intelligence; AI; capability assessment model; AI adoption; AI skills; AI capabilities; AI literacy;
    All these keywords.

    JEL classification:

    • M15 - Business Administration and Business Economics; Marketing; Accounting; Personnel Economics - - Business Administration - - - IT Management
    • G2 - Financial Economics - - Financial Institutions and Services

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:aza:airwa0:y:2021:v:1:i:1:p:18-33. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Henry Stewart Talks (email available below). General contact details of provider: .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.