IDEAS home Printed from https://ideas.repec.org/a/asi/aeafrj/v6y2016i3p115-126id1467.html
   My bibliography  Save this article

The Scope for Increasing Biofuel Crop Production in Japan: An Analysis of Alternative Policies

Author

Listed:
  • Ai Leon
  • Roberto Leon

Abstract

In 2010, concerns regarding Japan’s excessive dependence on imports for food and energy caused the Japanese government to introduce subsidies to stimulate biofuel crop production. In this paper, we study the viability of price subsidies and certain other policies with respect to increasing the production of biofuel crops. First, we estimate the elasticity of the supply of Japanese agriculture with respect to price (inclusive of the subsidy for each unit of production). For this purpose, we use a longitudinal database of 1822 municipalities that covers all 47 prefectures of Japan. This database includes information about the production of 116 crops and their respective revenues, including subsidies. Using panel data regression techniques, we determine that although the long-run supply of certain crops is highly elastic, this supply is highly inelastic if the production of other crops is held constant. Therefore, an increase in the demand for biofuel crops will cause substantial price increases of agricultural products, largely crowding out the demand for food crops. We then discuss the viability of encouraging various agricultural practices, such as multiple cropping and the cultivation of recently abandoned land. Instead of using abandoned land, which produces a lower yield and requires abundant labor, we recommend a multiple cropping system that involves the rotation of rice and wheat. Although these measures will increase biofuel crop production to a certain extent in the short run, full-scale biofuel crop production can only take place after substantial reforms are implemented to increase the production capacity of the Japanese agricultural sector.

Suggested Citation

  • Ai Leon & Roberto Leon, 2016. "The Scope for Increasing Biofuel Crop Production in Japan: An Analysis of Alternative Policies," Asian Economic and Financial Review, Asian Economic and Social Society, vol. 6(3), pages 115-126.
  • Handle: RePEc:asi:aeafrj:v:6:y:2016:i:3:p:115-126:id:1467
    as

    Download full text from publisher

    File URL: https://archive.aessweb.com/index.php/5002/article/view/1467/2112
    Download Restriction: no
    ---><---

    Other versions of this item:

    References listed on IDEAS

    as
    1. Searchinger, Timothy & Heimlich, Ralph & Houghton, R. A. & Dong, Fengxia & Elobeid, Amani & Fabiosa, Jacinto F. & Tokgoz, Simla & Hayes, Dermot J. & Yu, Hun-Hsiang, 2008. "Use of U.S. Croplands for Biofuels Increases Greenhouse Gases Through Emissions from Land-Use Change," Staff General Research Papers Archive 12881, Iowa State University, Department of Economics.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Mark W Rosegrant & Gary Yohe & Mandy Ewing & Rowena Valmonte-Santos & Tingju Zhu & Ian Burton & Saleemul Huq, 2010. "Climate Change and Asian Agriculture," Asian Journal of Agriculture and Development, Southeast Asian Regional Center for Graduate Study and Research in Agriculture (SEARCA), vol. 7(1), pages 41-81, June.
    2. Suopajärvi, Hannu & Umeki, Kentaro & Mousa, Elsayed & Hedayati, Ali & Romar, Henrik & Kemppainen, Antti & Wang, Chuan & Phounglamcheik, Aekjuthon & Tuomikoski, Sari & Norberg, Nicklas & Andefors, Alf , 2018. "Use of biomass in integrated steelmaking – Status quo, future needs and comparison to other low-CO2 steel production technologies," Applied Energy, Elsevier, vol. 213(C), pages 384-407.
    3. Tonini, Davide & Vadenbo, Carl & Astrup, Thomas Fruergaard, 2017. "Priority of domestic biomass resources for energy: Importance of national environmental targets in a climate perspective," Energy, Elsevier, vol. 124(C), pages 295-309.
    4. Milazzo, M.F. & Spina, F. & Cavallaro, S. & Bart, J.C.J., 2013. "Sustainable soy biodiesel," Renewable and Sustainable Energy Reviews, Elsevier, vol. 27(C), pages 806-852.
    5. Lotze-Campen, Hermann & von Witzke, Harald & Noleppa, Steffen & Schwarz, Gerald, 2015. "Science for food, climate protection and welfare: An economic analysis of plant breeding research in Germany," Agricultural Systems, Elsevier, vol. 136(C), pages 79-84.
    6. Iriarte, Alfredo & Rieradevall, Joan & Gabarrell, Xavier, 2012. "Transition towards a more environmentally sustainable biodiesel in South America: The case of Chile," Applied Energy, Elsevier, vol. 91(1), pages 263-273.
    7. Knut Einar Rosendahl & Jon Strand, 2011. "Carbon Leakage from the Clean Development Mechanism," The Energy Journal, International Association for Energy Economics, vol. 0(Number 4), pages 27-50.
    8. Lal, R., 2011. "Sequestering carbon in soils of agro-ecosystems," Food Policy, Elsevier, vol. 36(S1), pages 33-39.
    9. Brian Wright, 2014. "Global Biofuels: Key to the Puzzle of Grain Market Behavior," Journal of Economic Perspectives, American Economic Association, vol. 28(1), pages 73-98, Winter.
    10. Kriegler, Elmar, 2011. "Comment," Energy Economics, Elsevier, vol. 33(4), pages 594-596, July.
    11. Chen, Yuche & Zhang, Yunteng & Fan, Yueyue & Hu, Kejia & Zhao, Jianyou, 2017. "A dynamic programming approach for modeling low-carbon fuel technology adoption considering learning-by-doing effect," Applied Energy, Elsevier, vol. 185(P1), pages 825-835.
    12. repec:dau:papers:123456789/10752 is not listed on IDEAS
    13. Proost, Stef & Van Dender, Kurt, 2012. "Energy and environment challenges in the transport sector," Economics of Transportation, Elsevier, vol. 1(1), pages 77-87.
    14. Acquaye, Adolf A. & Sherwen, Tomás & Genovese, Andrea & Kuylenstierna, Johan & Lenny Koh, SC & McQueen-Mason, Simon, 2012. "Biofuels and their potential to aid the UK towards achieving emissions reduction policy targets," Renewable and Sustainable Energy Reviews, Elsevier, vol. 16(7), pages 5414-5422.
    15. Leong, Wai-Hong & Lim, Jun-Wei & Lam, Man-Kee & Uemura, Yoshimitsu & Ho, Yeek-Chia, 2018. "Third generation biofuels: A nutritional perspective in enhancing microbial lipid production," Renewable and Sustainable Energy Reviews, Elsevier, vol. 91(C), pages 950-961.
    16. repec:fpr:ifprib:2012ghienglish is not listed on IDEAS
    17. Withey, Patrick & van Kooten, G. Cornelis, 2014. "Wetlands Retention and Optimal Management of Waterfowl Habitat under Climate Change," Journal of Agricultural and Resource Economics, Western Agricultural Economics Association, vol. 39(1), pages 1-18, April.
    18. Canabarro, N.I. & Silva-Ortiz, P. & Nogueira, L.A.H. & Cantarella, H. & Maciel-Filho, R. & Souza, G.M., 2023. "Sustainability assessment of ethanol and biodiesel production in Argentina, Brazil, Colombia, and Guatemala," Renewable and Sustainable Energy Reviews, Elsevier, vol. 171(C).
    19. Jones, Carol Adaire & Nickerson, Cynthia J. & Heisey, Paul W., 2012. "New Uses of Old Tools: An Assessment of Current and Potential Agricultural Greenhouse Gas Mitigation with Sector-based Policies," 2012 Annual Meeting, August 12-14, 2012, Seattle, Washington 124735, Agricultural and Applied Economics Association.
    20. Abdul-Manan, Amir F.N. & Baharuddin, Azizan & Chang, Lee Wei, 2015. "Application of theory-based evaluation for the critical analysis of national biofuel policy: A case study in Malaysia," Evaluation and Program Planning, Elsevier, vol. 52(C), pages 39-49.
    21. Baral, Nabin & Rabotyagov, Sergey, 2017. "How much are wood-based cellulosic biofuels worth in the Pacific Northwest? Ex-ante and ex-post analysis of local people's willingness to pay," Forest Policy and Economics, Elsevier, vol. 83(C), pages 99-106.
    22. Vang Rasmussen, Laura & Rasmussen, Kjeld & Bech Bruun, Thilde, 2012. "Impacts of Jatropha-based biodiesel production on above and below-ground carbon stocks: A case study from Mozambique," Energy Policy, Elsevier, vol. 51(C), pages 728-736.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:asi:aeafrj:v:6:y:2016:i:3:p:115-126:id:1467. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Robert Allen (email available below). General contact details of provider: https://archive.aessweb.com/index.php/5002/ .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.