IDEAS home Printed from https://ideas.repec.org/a/arp/tjssrr/2018p653-656.html
   My bibliography  Save this article

Evaluation of Long Memory on the Malaysia Exchange Rate Market

Author

Listed:
  • Atikullah Ibrahim*

    (Department of Statistics and Decision Sciences, Faculty of Computer and Mathematical Sciences, UniversitiTeknologi MARA(UiTM),40450Shah Alam, Selango)

  • Siti Aida Sheikh Hussin

    (Department of Statistics and Decision Sciences, Faculty of Computer and Mathematical Sciences, UniversitiTeknologi MARA(UiTM),40450Shah Alam, Selangor)

  • Zalina Zahid

    (Department of Statistics and Decision Sciences, Faculty of Computer and Mathematical Sciences, UniversitiTeknologi MARA(UiTM),40450Shah Alam, Selangor)

  • SitiShalizaMohd Khairi

    (Department of Statistics and Decision Sciences, Faculty of Computer and Mathemat)

Abstract

This research evaluates the presence of long memory or long-term dependence on the Malaysian exchange rate. Daily, weekly and monthly data are evaluated against the US dollar (USD) covering from January 2005 to March 2018. Evaluation of long memory is based on the Geweke and Porter-Hudak estimation and the Maximum Likelihood Estimation. The result suggests the presence of long memory on all the daily, weekly and monthly data. Results show that shock on the Malaysian exchange rate persist longer than expected. The forecast capability also concludes that addition of the long memory presence from ARIMA model to ARFIMA model could improve the model forecast.

Suggested Citation

  • Atikullah Ibrahim* & Siti Aida Sheikh Hussin & Zalina Zahid & SitiShalizaMohd Khairi, 2018. "Evaluation of Long Memory on the Malaysia Exchange Rate Market," The Journal of Social Sciences Research, Academic Research Publishing Group, pages 653-656:6.
  • Handle: RePEc:arp:tjssrr:2018:p:653-656
    as

    Download full text from publisher

    File URL: https://www.arpgweb.com/pdf-files/spi6.22.653-656.pdf
    Download Restriction: no

    File URL: https://www.arpgweb.com/journal/7/special_issue/12-2018/6/4
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Christos Floros, 2008. "Long Memory In Exchange Rates: International Evidence," The International Journal of Business and Finance Research, The Institute for Business and Finance Research, vol. 2(1), pages 31-39.
    2. Al-Shboul, Mohammad & Anwar, Sajid, 2016. "Fractional integration in daily stock market indices at Jordan's Amman stock exchange," The North American Journal of Economics and Finance, Elsevier, vol. 37(C), pages 16-37.
    3. Cheung, Yin-Wong, 1993. "Long Memory in Foreign-Exchange Rates," Journal of Business & Economic Statistics, American Statistical Association, vol. 11(1), pages 93-101, January.
    4. Baillie, Richard T., 1996. "Long memory processes and fractional integration in econometrics," Journal of Econometrics, Elsevier, vol. 73(1), pages 5-59, July.
    5. ERER, Deniz & ERER, Elif & GÜLEÇ, Tuna Can, 2016. "Fractional Cointegration Analysis Of Stock Market And Exchange Rates: The Case Of Turkey," Studii Financiare (Financial Studies), Centre of Financial and Monetary Research "Victor Slavescu", vol. 20(3), pages 80-94.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Al-Shboul, Mohammad & Alsharari, Nizar, 2019. "The dynamic behavior of evolving efficiency: Evidence from the UAE stock markets," The Quarterly Review of Economics and Finance, Elsevier, vol. 73(C), pages 119-135.
    2. Geoffrey Ngene & Ann Nduati Mungai & Allen K. Lynch, 2018. "Long-Term Dependency Structure and Structural Breaks: Evidence from the U.S. Sector Returns and Volatility," Review of Pacific Basin Financial Markets and Policies (RPBFMP), World Scientific Publishing Co. Pte. Ltd., vol. 21(02), pages 1-38, June.
    3. Kyaw, NyoNyo A. & Los, Cornelis A. & Zong, Sijing, 2006. "Persistence characteristics of Latin American financial markets," Journal of Multinational Financial Management, Elsevier, vol. 16(3), pages 269-290, July.
    4. Carlos P. Barros & Luis A. Gil-Alana & Zhongfei Chen, 2016. "Exchange rate persistence of the Chinese yuan against the US dollar in the NDF market," Empirical Economics, Springer, vol. 51(4), pages 1399-1414, December.
    5. Jr‐Wei Huang & Sharon S. Yang & Chuang‐Chang Chang, 2018. "Modeling temperature behaviors: Application to weather derivative valuation," Journal of Futures Markets, John Wiley & Sons, Ltd., vol. 38(9), pages 1152-1175, September.
    6. Rim Ammar Lamouchi, 2020. "Long Memory and Stock Market Efficiency: Case of Saudi Arabia," International Journal of Economics and Financial Issues, Econjournals, vol. 10(3), pages 29-34.
    7. Ana Pérez & Esther Ruiz, 2002. "Modelos de memoria larga para series económicas y financieras," Investigaciones Economicas, Fundación SEPI, vol. 26(3), pages 395-445, September.
    8. Kunal Saha & Vinodh Madhavan & Chandrashekhar G. R. & David McMillan, 2020. "Pitfalls in long memory research," Cogent Economics & Finance, Taylor & Francis Journals, vol. 8(1), pages 1733280-173, January.
    9. Chevillon, Guillaume & Mavroeidis, Sophocles, 2011. "Learning generates Long Memory," ESSEC Working Papers WP1113, ESSEC Research Center, ESSEC Business School.
    10. José Manuel Madeira Belbute, 2015. "Does Final Energy Demand in Portugal Exhibit Long Memory? A Fractional Integration Analysis," CEFAGE-UE Working Papers 2015_04, University of Evora, CEFAGE-UE (Portugal).
    11. Michael J. Dueker & Richard Startz, 1997. "Maximum-likelihood estimation of fractional cointegration with application to the short end of the yield curve," Working Papers 1994-027, Federal Reserve Bank of St. Louis.
    12. Abderrazak Ben Maatoug & Rim Lamouchi & Russell Davidson & Ibrahim Fatnassi, 2018. "Modelling Foreign Exchange Realized Volatility Using High Frequency Data: Long Memory versus Structural Breaks," Central European Journal of Economic Modelling and Econometrics, Central European Journal of Economic Modelling and Econometrics, vol. 10(1), pages 1-25, March.
    13. Mostafa R. Sarkandiz, 2023. "Forecasting the Turkish Lira Exchange Rates through Univariate Techniques: Can the Simple Models Outperform the Sophisticated Ones?," Papers 2302.08897, arXiv.org.
    14. Baillie, Richard T. & Bollerslev, Tim & Mikkelsen, Hans Ole, 1996. "Fractionally integrated generalized autoregressive conditional heteroskedasticity," Journal of Econometrics, Elsevier, vol. 74(1), pages 3-30, September.
    15. Franses,Philip Hans & Dijk,Dick van & Opschoor,Anne, 2014. "Time Series Models for Business and Economic Forecasting," Cambridge Books, Cambridge University Press, number 9780521520911, September.
    16. Choi, Kyongwook & Zivot, Eric, 2007. "Long memory and structural changes in the forward discount: An empirical investigation," Journal of International Money and Finance, Elsevier, vol. 26(3), pages 342-363, April.
    17. Andrews, Donald W.K. & Lieberman, Offer & Marmer, Vadim, 2006. "Higher-order improvements of the parametric bootstrap for long-memory Gaussian processes," Journal of Econometrics, Elsevier, vol. 133(2), pages 673-702, August.
    18. Walther, Thomas & Klein, Tony & Thu, Hien Pham & Piontek, Krzysztof, 2017. "True or spurious long memory in European non-EMU currencies," Research in International Business and Finance, Elsevier, vol. 40(C), pages 217-230.
    19. Proelss, Juliane & Schweizer, Denis & Seiler, Volker, 2020. "The economic importance of rare earth elements volatility forecasts," International Review of Financial Analysis, Elsevier, vol. 71(C).
    20. van Dijk, Dick & Franses, Philip Hans & Paap, Richard, 2002. "A nonlinear long memory model, with an application to US unemployment," Journal of Econometrics, Elsevier, vol. 110(2), pages 135-165, October.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:arp:tjssrr:2018:p:653-656. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Managing Editor (email available below). General contact details of provider: http://arpgweb.com/?ic=journal&journal=7&info=aims .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.