IDEAS home Printed from https://ideas.repec.org/a/arp/tjssrr/2018p646-652.html
   My bibliography  Save this article

Time-Varying Copula Modelling Between Malaysia and Major Stock Markets

Author

Listed:
  • Nurul Hanis Aminuddin Jafry

    (School of Mathematical Sciences, Faculty of Science and Technology, Universiti Kebangsaan Malaysia, 43600 Bangi, Selangor, Malaysia)

  • Ruzanna Ab Razak

    (Quantitative Methods Unit, Faculty of Management, Multimedia University, 63100 Cyberjaya, Selangor, Malaysia)

  • Noriszura Ismail*

    (School of Mathematical Sciences, Faculty of Science and Technology, Universiti Kebangsaan Malaysia, 43600 Bangi, Selangor, Malaysia)

Abstract

Studies on dependence between stock markets are important because of their implications on the process of decision-making in investment. Many previous studies measure the dependence between markets using static copula. However, in recent years, time-varying copula has been used as an alternative for measuring dependence due to its capability of capturing time-varying dependence between markets. This study uses both static and time-varying copulas to measure the dependence structure between Malaysia and major stock markets (US, UK and Japan) based on the sample data from year 2007 Q1 until year 2017 Q3. The results reveal that the best model for all pairs of indices is the time-varying SJC copula, which also reveals that the Malaysia-US pair has the weakest dependence structure compared to other pairs. In terms of lower and upper tails, the Malaysia-UK and the Malaysia-Japan pairs have the strongest dependence structure respectively. Evidence from this research suggests that diversifications involving Malaysia and US stock markets are not effective.

Suggested Citation

  • Nurul Hanis Aminuddin Jafry & Ruzanna Ab Razak & Noriszura Ismail*, 2018. "Time-Varying Copula Modelling Between Malaysia and Major Stock Markets," The Journal of Social Sciences Research, Academic Research Publishing Group, pages 646-652:6.
  • Handle: RePEc:arp:tjssrr:2018:p:646-652
    as

    Download full text from publisher

    File URL: https://www.arpgweb.com/pdf-files/spi6.21.646-652.pdf
    Download Restriction: no

    File URL: https://www.arpgweb.com/journal/7/special_issue/12-2018/6/4
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Hammoudeh, Shawkat & Mensi, Walid & Reboredo, Juan Carlos & Nguyen, Duc Khuong, 2014. "Dynamic dependence of the global Islamic equity index with global conventional equity market indices and risk factors," Pacific-Basin Finance Journal, Elsevier, vol. 30(C), pages 189-206.
    2. Aloui, Chaker & Messaoud, Samia Ben, 2015. "Measuring Risk of Portfolio : GARCH-Copula Model," Journal of Economic Integration, Center for Economic Integration, Sejong University, vol. 30, pages 172-205.
    3. Erginbay Ugurlu & Eleftherios Thalassinos & Yusuf Muratoglu, 2014. "Modeling Volatility in the Stock Markets using GARCH Models: European Emerging Economies and Turkey," International Journal of Economics & Business Administration (IJEBA), International Journal of Economics & Business Administration (IJEBA), vol. 0(3), pages 72-87.
    4. Nelson, Daniel B, 1991. "Conditional Heteroskedasticity in Asset Returns: A New Approach," Econometrica, Econometric Society, vol. 59(2), pages 347-370, March.
    5. Andrew J. Patton, 2006. "Modelling Asymmetric Exchange Rate Dependence," International Economic Review, Department of Economics, University of Pennsylvania and Osaka University Institute of Social and Economic Research Association, vol. 47(2), pages 527-556, May.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Sehgal, Sanjay & Pandey, Piyush & Diesting, Florent, 2017. "Examining dynamic currency linkages amongst South Asian economies: An empirical study," Research in International Business and Finance, Elsevier, vol. 42(C), pages 173-190.
    2. Tian, Maoxi & Ji, Hao, 2022. "GARCH copula quantile regression model for risk spillover analysis," Finance Research Letters, Elsevier, vol. 44(C).
    3. Ji, Hao & Naeem, Muhammad & Zhang, Jing & Tiwari, Aviral Kumar, 2024. "Dynamic dependence and spillover among the energy related ETFs: From the hedging effectiveness perspective," Energy Economics, Elsevier, vol. 136(C).
    4. Petropoulos, Fotios & Apiletti, Daniele & Assimakopoulos, Vassilios & Babai, Mohamed Zied & Barrow, Devon K. & Ben Taieb, Souhaib & Bergmeir, Christoph & Bessa, Ricardo J. & Bijak, Jakub & Boylan, Joh, 2022. "Forecasting: theory and practice," International Journal of Forecasting, Elsevier, vol. 38(3), pages 705-871.
      • Fotios Petropoulos & Daniele Apiletti & Vassilios Assimakopoulos & Mohamed Zied Babai & Devon K. Barrow & Souhaib Ben Taieb & Christoph Bergmeir & Ricardo J. Bessa & Jakub Bijak & John E. Boylan & Jet, 2020. "Forecasting: theory and practice," Papers 2012.03854, arXiv.org, revised Jan 2022.
    5. Sébastien Laurent & Luc Bauwens & Jeroen V. K. Rombouts, 2006. "Multivariate GARCH models: a survey," Journal of Applied Econometrics, John Wiley & Sons, Ltd., vol. 21(1), pages 79-109.
    6. Dominique Guegan & Jing Zang, 2009. "Pricing bivariate option under GARCH-GH model with dynamic copula: application for Chinese market," The European Journal of Finance, Taylor & Francis Journals, vol. 15(7-8), pages 777-795.
    7. Yao, Yinhong & Li, Jingyu & Chen, Wei, 2024. "Multiscale extreme risk spillovers among the Chinese mainland, Hong Kong, and London stock markets: Comparing the impacts of three Stock Connect programs," International Review of Economics & Finance, Elsevier, vol. 89(PA), pages 1217-1233.
    8. Mensi, Walid & Tiwari, Aviral & Bouri, Elie & Roubaud, David & Al-Yahyaee, Khamis H., 2017. "The dependence structure across oil, wheat, and corn: A wavelet-based copula approach using implied volatility indexes," Energy Economics, Elsevier, vol. 66(C), pages 122-139.
    9. Tian, Maoxi & Guo, Fei & Niu, Rong, 2022. "Risk spillover analysis of China’s financial sectors based on a new GARCH copula quantile regression model," The North American Journal of Economics and Finance, Elsevier, vol. 63(C).
    10. Krzysztof Echaust & Małgorzata Just, 2021. "Tail Dependence between Crude Oil Volatility Index and WTI Oil Price Movements during the COVID-19 Pandemic," Energies, MDPI, vol. 14(14), pages 1-21, July.
    11. Muteba Mwamba, John W. & Hammoudeh, Shawkat & Gupta, Rangan, 2017. "Financial tail risks in conventional and Islamic stock markets: A comparative analysis," Pacific-Basin Finance Journal, Elsevier, vol. 42(C), pages 60-82.
    12. Nikolaos Antonakakis & Ioannis Chatziantoniou & David Gabauer, 2021. "The impact of Euro through time: Exchange rate dynamics under different regimes," International Journal of Finance & Economics, John Wiley & Sons, Ltd., vol. 26(1), pages 1375-1408, January.
    13. So, Mike K.P. & Chan, Thomas W.C. & Chu, Amanda M.Y., 2022. "Efficient estimation of high-dimensional dynamic covariance by risk factor mapping: Applications for financial risk management," Journal of Econometrics, Elsevier, vol. 227(1), pages 151-167.
    14. Naifar, Nader & Hammoudeh, Shawkat & Al dohaiman, Mohamed S., 2016. "Dependence structure between sukuk (Islamic bonds) and stock market conditions: An empirical analysis with Archimedean copulas," Journal of International Financial Markets, Institutions and Money, Elsevier, vol. 44(C), pages 148-165.
    15. Su, EnDer, 2014. "Measuring Contagion Risk in High Volatility State between Major Banks in Taiwan by Threshold Copula GARCH Model," MPRA Paper 58161, University Library of Munich, Germany.
    16. Sunil S. Poshakwale & Anandadeep Mandal, 2017. "Sources of time varying return comovements during different economic regimes: evidence from the emerging Indian equity market," Review of Quantitative Finance and Accounting, Springer, vol. 48(4), pages 859-892, May.
    17. Matthias R. Fengler & Helmut Herwartz & Christian Werner, 2012. "A Dynamic Copula Approach to Recovering the Index Implied Volatility Skew," Journal of Financial Econometrics, Oxford University Press, vol. 10(3), pages 457-493, June.
    18. Boikos, Spyridon & Bournakis, Ioannis & Christopoulos, Dimitris & McAdam, Peter, 2023. "Financial reforms and innovation: A micro–macro perspective," Journal of International Money and Finance, Elsevier, vol. 132(C).
    19. Harvey,Andrew C., 2013. "Dynamic Models for Volatility and Heavy Tails," Cambridge Books, Cambridge University Press, number 9781107034723, January.
    20. Andersen, Torben G. & Bollerslev, Tim & Christoffersen, Peter F. & Diebold, Francis X., 2013. "Financial Risk Measurement for Financial Risk Management," Handbook of the Economics of Finance, in: G.M. Constantinides & M. Harris & R. M. Stulz (ed.), Handbook of the Economics of Finance, volume 2, chapter 0, pages 1127-1220, Elsevier.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:arp:tjssrr:2018:p:646-652. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Managing Editor (email available below). General contact details of provider: http://arpgweb.com/?ic=journal&journal=7&info=aims .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.