IDEAS home Printed from https://ideas.repec.org/a/apa/ijtess/2018p102-111.html
   My bibliography  Save this article

Hybrid PCM and Transparent Solar Cells in Zero Energy Buildings

Author

Listed:
  • Akram W. Ezzat

    (Mechanical Engineering Department, University of Baghdad, Baghdad, Iraq)

  • Ihab A. Wahbi

    (Electrical Engineering Department, Jordanian University, Amman, Jordan)

  • Zainab A. Wahbi

    (Architectural Engineering Department, Jordanian University, Amman, Jordan)

Abstract

Zero energy building design could be realized by passive design. Having energy conservation concepts and active mechanical renewable energy generation systems could be considered as passive technique. This concept becomes a very interesting technique in countries that consume a lot of energy for their domestic sector. The purpose of the recent paper is to investigate the effect of hybrid construction material that merges phase change material, PCM walls for heat load minimization and transparent solar cells, and TSC in the windows for electricity generation for the purpose of illumination in such typical design. PCMs could be used for storing thermal energy and utilizing this energy during different annual seasons by absorption or release mechanisms to keep the building’s inside temperature at thermal comfort state. While TSC,s are substances that allow partial Sun light penetration for illumination during day and use the other part for electricity generation at night. The paper introduce a typical architectural design for residential building that utilizes such type of constructional material for energy saving and analyzes thermal effectiveness of using PCM and power production effectiveness of using TSC as passive technique integrated with the zero-energy building envelope. Proper modeling tool has been used to investigate the impact of these materials on the thermal comfort perceived by the occupants. Results show that using such type of hybrid materials reduces annual energy consumption. It has been concluded that the passive structural heat isolation and power production material is a very effective manner in countries like Iraq which has severe temperature differences between summer and winter seasons.

Suggested Citation

  • Akram W. Ezzat & Ihab A. Wahbi & Zainab A. Wahbi, 2018. "Hybrid PCM and Transparent Solar Cells in Zero Energy Buildings," International Journal of Technology and Engineering Studies, PROF.IR.DR.Mohid Jailani Mohd Nor, vol. 4(3), pages 102-111.
  • Handle: RePEc:apa:ijtess:2018:p:102-111
    DOI: 10.20469/ijtes.4.10004-3
    as

    Download full text from publisher

    File URL: https://kkgpublications.com/technology-engineering-studies-volume-4-issue-5/
    Download Restriction: no

    File URL: https://kkgpublications.com/wp-content/uploads/2018/10/IJTES.4.10004-3.pdf
    Download Restriction: no

    File URL: https://libkey.io/10.20469/ijtes.4.10004-3?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    References listed on IDEAS

    as
    1. Muhammad Syukri Imran & Azhaili Baharun & Siti HalipahIbrahim & Wan Azlan Wan Zainal Abidin, 2017. "Evaluation of low cost radiant cooling panel in a test room with passively cooled water," Journal of Advances in Technology and Engineering Research, A/Professor Akbar A. Khatibi, vol. 3(5), pages 211-223.
    2. Dutil, Yvan & Rousse, Daniel R. & Salah, Nizar Ben & Lassue, Stéphane & Zalewski, Laurent, 2011. "A review on phase-change materials: Mathematical modeling and simulations," Renewable and Sustainable Energy Reviews, Elsevier, vol. 15(1), pages 112-130, January.
    3. Novan Agung Mahardiono & Imam Djunaedi, 2015. "Piecewise Affine Modelling of Hybrid Control Systems In Solar Cell-BatterY Supercapacitor," Journal of Advances in Technology and Engineering Research, A/Professor Akbar A. Khatibi, vol. 1(1), pages 35-39.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Olufunmilola Adetayo Obakin, 2018. "Technology for Energy Efficient Building Materials: Towards Sustainable Housing Delivery in Nigeria," International Journal of Technology and Engineering Studies, PROF.IR.DR.Mohid Jailani Mohd Nor, vol. 4(5), pages 167-178.
    2. I. Abdennour & M. Ouardouz & A.S. Bernoussi & M. Amharref, 2019. "Energy Sharing in a Grid: Cellular Automata Approach," International Journal of Technology and Engineering Studies, PROF.IR.DR.Mohid Jailani Mohd Nor, vol. 5(5), pages 139-150.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Sharif, M.K. Anuar & Al-Abidi, A.A. & Mat, S. & Sopian, K. & Ruslan, M.H. & Sulaiman, M.Y. & Rosli, M.A.M., 2015. "Review of the application of phase change material for heating and domestic hot water systems," Renewable and Sustainable Energy Reviews, Elsevier, vol. 42(C), pages 557-568.
    2. Zhao, Dongliang & Tan, Gang, 2015. "Numerical analysis of a shell-and-tube latent heat storage unit with fins for air-conditioning application," Applied Energy, Elsevier, vol. 138(C), pages 381-392.
    3. Hamedi, M.R. & Doustdar, O. & Tsolakis, A. & Hartland, J., 2019. "Thermal energy storage system for efficient diesel exhaust aftertreatment at low temperatures," Applied Energy, Elsevier, vol. 235(C), pages 874-887.
    4. Waqas, Adeel & Ud Din, Zia, 2013. "Phase change material (PCM) storage for free cooling of buildings—A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 18(C), pages 607-625.
    5. Ma, Zhesong & Wang, Yanhui & Wang, Shuxin & Yang, Yanan, 2016. "Ocean thermal energy harvesting with phase change material for underwater glider," Applied Energy, Elsevier, vol. 178(C), pages 557-566.
    6. Saffari, Mohammad & de Gracia, Alvaro & Ushak, Svetlana & Cabeza, Luisa F., 2017. "Passive cooling of buildings with phase change materials using whole-building energy simulation tools: A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 80(C), pages 1239-1255.
    7. Rao, Zhonghao & Wang, Shuangfeng & Peng, Feifei & Zhang, Wei & Zhang, Yanlai, 2012. "Dissipative particle dynamics investigation of microencapsulated thermal energy storage phase change materials," Energy, Elsevier, vol. 44(1), pages 805-812.
    8. Amin Ebrahimi & Chris R. Kleijn & Ian M. Richardson, 2019. "Sensitivity of Numerical Predictions to the Permeability Coefficient in Simulations of Melting and Solidification Using the Enthalpy-Porosity Method," Energies, MDPI, vol. 12(22), pages 1-18, November.
    9. Tehrani, S. Saeed Mostafavi & Taylor, Robert A. & Saberi, Pouya & Diarce, Gonzalo, 2016. "Design and feasibility of high temperature shell and tube latent heat thermal energy storage system for solar thermal power plants," Renewable Energy, Elsevier, vol. 96(PA), pages 120-136.
    10. Jin, Xing & Hu, Huoyan & Shi, Xing & Zhou, Xin & Yang, Liu & Yin, Yonggao & Zhang, Xiaosong, 2018. "A new heat transfer model of phase change material based on energy asymmetry," Applied Energy, Elsevier, vol. 212(C), pages 1409-1416.
    11. Sodhi, Gurpreet Singh & Muthukumar, P., 2021. "Compound charging and discharging enhancement in multi-PCM system using non-uniform fin distribution," Renewable Energy, Elsevier, vol. 171(C), pages 299-314.
    12. Ge, Haoshan & Li, Haiyan & Mei, Shengfu & Liu, Jing, 2013. "Low melting point liquid metal as a new class of phase change material: An emerging frontier in energy area," Renewable and Sustainable Energy Reviews, Elsevier, vol. 21(C), pages 331-346.
    13. Klimeš, Lubomír & Charvát, Pavel & Mastani Joybari, Mahmood & Zálešák, Martin & Haghighat, Fariborz & Panchabikesan, Karthik & El Mankibi, Mohamed & Yuan, Yanping, 2020. "Computer modelling and experimental investigation of phase change hysteresis of PCMs: The state-of-the-art review," Applied Energy, Elsevier, vol. 263(C).
    14. Heier, Johan & Bales, Chris & Martin, Viktoria, 2015. "Combining thermal energy storage with buildings – a review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 42(C), pages 1305-1325.
    15. Mirzaei, Parham A. & Haghighat, Fariborz, 2012. "Modeling of phase change materials for applications in whole building simulation," Renewable and Sustainable Energy Reviews, Elsevier, vol. 16(7), pages 5355-5362.
    16. Chiu, Justin N.W. & Martin, Viktoria, 2013. "Multistage latent heat cold thermal energy storage design analysis," Applied Energy, Elsevier, vol. 112(C), pages 1438-1445.
    17. Zhang, Ziyu & Ding, Tao & Zhou, Quan & Sun, Yuge & Qu, Ming & Zeng, Ziyu & Ju, Yuntao & Li, Li & Wang, Kang & Chi, Fangde, 2021. "A review of technologies and applications on versatile energy storage systems," Renewable and Sustainable Energy Reviews, Elsevier, vol. 148(C).
    18. Allouche, Yosr & Varga, Szabolcs & Bouden, Chiheb & Oliveira, Armando C., 2016. "Validation of a CFD model for the simulation of heat transfer in a tubes-in-tank PCM storage unit," Renewable Energy, Elsevier, vol. 89(C), pages 371-379.
    19. Zeneli, M. & Malgarinos, I. & Nikolopoulos, A. & Nikolopoulos, N. & Grammelis, P. & Karellas, S. & Kakaras, E., 2019. "Numerical simulation of a silicon-based latent heat thermal energy storage system operating at ultra-high temperatures," Applied Energy, Elsevier, vol. 242(C), pages 837-853.
    20. Zahir, Md. Hasan & Mohamed, Shamseldin A. & Saidur, R. & Al-Sulaiman, Fahad A., 2019. "Supercooling of phase-change materials and the techniques used to mitigate the phenomenon," Applied Energy, Elsevier, vol. 240(C), pages 793-817.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:apa:ijtess:2018:p:102-111. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: PROF.IR.DR.Mohid Jailani Mohd Nor (email available below). General contact details of provider: https://kkgpublications.com/technology/ .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.