IDEAS home Printed from https://ideas.repec.org/a/anm/alpnmr/v9y2021i1p63-84.html
   My bibliography  Save this article

Disassembly Line Balancing by Using Simulation Optimization

Author

Listed:
  • Muhammet Enes Akpınar
  • Mehmet Ali Ilgın
  • Hüseyin Aktaş

Abstract

Increasing environmental awareness in today's society and stricter environmental regulations have forced manufacturing firms to take necessary actions for the recovery of end-of-life (EOL) products through different options (e.g., recycling, remanufacturing,). Disassembly is regarded as a critical operation in EOL treatment of used products since all product recovery options require the disassembly of EOL products at certain levels. This critical operation is generally carried out by forming disassembly lines in product recovery facilities. Miscellaneous methodologies based on heuristics, metaheuristics and mathematical programming have been proposed for the balancing of disassembly lines. Majority of those methodologies assume that disassembly line parameters are deterministic by ignoring the fact that a disassembly line involves great deal of uncertainty mainly due to uncertain conditions of arriving EOL products. Considering this high level of uncertainty, simulation modeling can be an effective tool for the modeling of disassembly lines. In this study, a simulation-based disassembly line balancing methodology is proposed for the explicit consideration of stochastic parameters. First, simulation model of a disassembly line is constructed. Since the disassembly line balancing problem has a combinatorial nature, two commonly used metaheuristics (i.e., genetic algorithms (GAs) and simulated annealing (SA)) are integrated with the simulation model in order to balance the disassembly line. The disassembly sequence and task assignments proposed by GA are compared with the sequence and task assignments proposed by SA. This comparison indicates that GA outperforms SA in four of eight performance measures while both algorithms have the same value for line efficiency measure.

Suggested Citation

  • Muhammet Enes Akpınar & Mehmet Ali Ilgın & Hüseyin Aktaş, 2021. "Disassembly Line Balancing by Using Simulation Optimization," Alphanumeric Journal, Bahadir Fatih Yildirim, vol. 9(1), pages 63-84, June.
  • Handle: RePEc:anm:alpnmr:v:9:y:2021:i:1:p:63-84
    DOI: http://dx.doi.org/10.17093/alphanumeric.891406
    as

    Download full text from publisher

    File URL: https://www.alphanumericjournal.com/media/Issue/volume-9-issue-1-2021/disassembly-line-balancing-by-using-simulation-optimization_llyq8LP.pdf
    Download Restriction: no

    File URL: https://alphanumericjournal.com/article/disassembly-line-balancing-by-using-simulation-optimization
    Download Restriction: no

    File URL: https://libkey.io/http://dx.doi.org/10.17093/alphanumeric.891406?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    References listed on IDEAS

    as
    1. Lixia Zhu & Zeqiang Zhang & Yi Wang, 2018. "A Pareto firefly algorithm for multi-objective disassembly line balancing problems with hazard evaluation," International Journal of Production Research, Taylor & Francis Journals, vol. 56(24), pages 7354-7374, December.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Junkai He & Feng Chu & Feifeng Zheng & Ming Liu, 2021. "A green-oriented bi-objective disassembly line balancing problem with stochastic task processing times," Annals of Operations Research, Springer, vol. 296(1), pages 71-93, January.
    2. Tao Yin & Yuanzhi Wang & Shixi Cai & Yuxun Zhang & Jianyu Long, 2024. "Unified Modeling and Multi-Objective Optimization for Disassembly Line Balancing with Distinct Station Configurations," Mathematics, MDPI, vol. 12(17), pages 1-24, September.
    3. Liang, Wei & Zhang, Zeqiang & Yin, Tao & Zhang, Yu & Wu, Tengfei, 2023. "Modelling and optimisation of energy consumption and profit-oriented multi-parallel partial disassembly line balancing problem," International Journal of Production Economics, Elsevier, vol. 262(C).
    4. Jianhua Cao & Xuhui Xia & Lei Wang & Zelin Zhang & Xiang Liu, 2019. "A Novel Multi-Efficiency Optimization Method for Disassembly Line Balancing Problem," Sustainability, MDPI, vol. 11(24), pages 1-16, December.
    5. Battaïa, Olga & Dolgui, Alexandre, 2022. "Hybridizations in line balancing problems: A comprehensive review on new trends and formulations," International Journal of Production Economics, Elsevier, vol. 250(C).
    6. Fang, Yilin & Liu, Quan & Li, Miqing & Laili, Yuanjun & Pham, Duc Truong, 2019. "Evolutionary many-objective optimization for mixed-model disassembly line balancing with multi-robotic workstations," European Journal of Operational Research, Elsevier, vol. 276(1), pages 160-174.
    7. Lixia Zhu & Zeqiang Zhang & Yi Wang & Ning Cai, 2020. "On the end-of-life state oriented multi-objective disassembly line balancing problem," Journal of Intelligent Manufacturing, Springer, vol. 31(6), pages 1403-1428, August.
    8. Wei Meng & Xiufen Zhang, 2020. "Optimization of Remanufacturing Disassembly Line Balance Considering Multiple Failures and Material Hazards," Sustainability, MDPI, vol. 12(18), pages 1-16, September.
    9. He, Junkai & Chu, Feng & Dolgui, Alexandre & Anjos, Miguel F., 2024. "Multi-objective disassembly line balancing and related supply chain management problems under uncertainty: Review and future trends," International Journal of Production Economics, Elsevier, vol. 272(C).
    10. Junyong Liang & Shunsheng Guo & Yunfei Zhang & Wenfang Liu & Shengwen Zhou, 2021. "Energy-Efficient Optimization of Two-Sided Disassembly Line Balance Considering Parallel Operation and Uncertain Using Multiobjective Flatworm Algorithm," Sustainability, MDPI, vol. 13(6), pages 1-23, March.
    11. Jin-Ling Bei & Ming-Xin Zhang & Ji-Quan Wang & Hao-Hao Song & Hong-Yu Zhang, 2023. "Improved Hybrid Firefly Algorithm with Probability Attraction Model," Mathematics, MDPI, vol. 11(2), pages 1-59, January.
    12. Ömer Faruk Yılmaz & Büşra Yazıcı, 2022. "Tactical level strategies for multi-objective disassembly line balancing problem with multi-manned stations: an optimization model and solution approaches," Annals of Operations Research, Springer, vol. 319(2), pages 1793-1843, December.
    13. Qi Zhang & Yang Xing & Man Yao & Jiacun Wang & Xiwang Guo & Shujin Qin & Liang Qi & Fuguang Huang, 2024. "An Improved Discrete Bat Algorithm for Multi-Objective Partial Parallel Disassembly Line Balancing Problem," Mathematics, MDPI, vol. 12(5), pages 1-22, February.
    14. Nuno O. Fernandes & Matthias Thürer & Federica Costa, 2024. "Work Faster, Work in Parallel, or Work Overtime? An Assessment of Short-Term Capacity Adjustments by Simulation," Mathematics, MDPI, vol. 12(16), pages 1-8, August.
    15. Yusha Zhou & Xiuping Guo & Dong Li, 2022. "A dynamic programming approach to a multi-objective disassembly line balancing problem," Annals of Operations Research, Springer, vol. 311(2), pages 921-944, April.

    More about this item

    Keywords

    Disassembly; Genetic Algorithm; Line Balancing; Simulated Annealing; Simulation;
    All these keywords.

    JEL classification:

    • C01 - Mathematical and Quantitative Methods - - General - - - Econometrics

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:anm:alpnmr:v:9:y:2021:i:1:p:63-84. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Bahadir Fatih Yildirim (email available below). General contact details of provider: https://www.alphanumericjournal.com/ .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.