IDEAS home Printed from https://ideas.repec.org/a/aio/manmar/v6y2008i1p175-184.html
   My bibliography  Save this article

Understanding Customers - Profiling And Segmentation

Author

Listed:
  • Mircea Andrei SCRIDON

    (Babes-Bolyai University, Cluj-Napoca, Romania)

Abstract

In any industry, the first step to finding and creating profitable customers is determining what drives profitability. This leads to better prospecting and more successful customer relationship management. Any company can segment and profile their customer base to uncover those profit drivers using the knowledge of their customers, products, and markets. Or they can use data-driven techniques to find natural clusters in their customer or prospect base. Whatever the method, the process will lead to kn

Suggested Citation

  • Mircea Andrei SCRIDON, 2008. "Understanding Customers - Profiling And Segmentation," Management and Marketing Journal, University of Craiova, Faculty of Economics and Business Administration, vol. 6(1), pages 175-184, November.
  • Handle: RePEc:aio:manmar:v:6:y:2008:i:1:p:175-184
    as

    Download full text from publisher

    File URL: http://www.mnmk.ro/documents/2008/2008-22.pdf
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. David J. Hand & Heikki Mannila & Padhraic Smyth, 2001. "Principles of Data Mining," MIT Press Books, The MIT Press, edition 1, volume 1, number 026208290x, December.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Mustafa Nizamul Aziz & A.K.M. Monzurul Islam, 2020. "Reviewing Data Mining as an enabling technology for BI," International Journal of Science and Business, IJSAB International, vol. 4(7), pages 46-51.
    2. Wang, Wenjun & Liu, Dong & Liu, Xiao & Pan, Lin, 2013. "Fuzzy overlapping community detection based on local random walk and multidimensional scaling," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 392(24), pages 6578-6586.
    3. Pooyan Ramezani Besheli & Mehdi Zare & Ramezan Ramezani Umali & Gholamreza Nakhaeezadeh, 2015. "Zoning Iran based on earthquake precursor importance and introducing a main zone using a data-mining process," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 78(2), pages 821-835, September.
    4. Ying-Si Zhao & Yan-Ping Liu & Qing-An Zeng, 2017. "A weight-based item recommendation approach for electronic commerce systems," Electronic Commerce Research, Springer, vol. 17(2), pages 205-226, June.
    5. Aurora Sánchez & Cristian Vidal-Silva & Gabriela Mancilla & Miguel Tupac-Yupanqui & José M. Rubio, 2023. "Sustainable e-Learning by Data Mining—Successful Results in a Chilean University," Sustainability, MDPI, vol. 15(2), pages 1-16, January.
    6. Yili Chen & Congdong Li & Han Wang, 2022. "Big Data and Predictive Analytics for Business Intelligence: A Bibliographic Study (2000–2021)," Forecasting, MDPI, vol. 4(4), pages 1-20, September.
    7. Yi-Chen Chung & Hsien-Ming Chou & Chih-Neng Hung & Chihli Hung, 2021. "Using Textual and Economic Features to Predict the RMB Exchange Rate," Advances in Management and Applied Economics, SCIENPRESS Ltd, vol. 11(6), pages 1-8.
    8. Szymkowiak Marcin & Klimanek Tomasz & Józefowski Tomasz, 2018. "Applying Market Basket Analysis to Official Statistical Data," Econometrics. Advances in Applied Data Analysis, Sciendo, vol. 22(1), pages 39-57, March.
    9. Matthias Schonlau, 2002. "The clustergram: A graph for visualizing hierarchical and nonhierarchical cluster analyses," Stata Journal, StataCorp LLC, vol. 2(4), pages 391-402, November.
    10. Chiara Cornalba, 2009. "Clinical and Operational Risk: A Bayesian Approach," Methodology and Computing in Applied Probability, Springer, vol. 11(1), pages 47-63, March.
    11. Malliaris, A.G. & Malliaris, Mary, 2011. "Are foreign currency markets interdependent? evidence from data mining technologies," MPRA Paper 35261, University Library of Munich, Germany.
    12. Rezaei , Pooria & Ebrahimi , Seyed Babak & Azin , Pejman, 2019. "Evaluating the Application of a Financial Early Warning System in the Iranian Banking System," Journal of Money and Economy, Monetary and Banking Research Institute, Central Bank of the Islamic Republic of Iran, vol. 14(2), pages 177-204, April.
    13. Carrizosa, Emilio & Martín-Barragán, Belén & Morales, Dolores Romero, 2011. "Detecting relevant variables and interactions in supervised classification," European Journal of Operational Research, Elsevier, vol. 213(1), pages 260-269, August.
    14. Babaei, Golnoosh & Giudici, Paolo & Raffinetti, Emanuela, 2023. "Explainable FinTech lending," Journal of Economics and Business, Elsevier, vol. 125.
    15. Chen-Yang Cheng, 2014. "Indoor localization algorithm using clustering on signal and coordination pattern," Annals of Operations Research, Springer, vol. 216(1), pages 83-99, May.
    16. Dursun Delen & Marilyn G. Kletke & Jin-Hwa Kim, 2005. "A Scalable Classification Algorithm for Very Large Datasets," Journal of Information & Knowledge Management (JIKM), World Scientific Publishing Co. Pte. Ltd., vol. 4(02), pages 83-94.
    17. Bőgel, György, 2011. "Az adatrobbanás mint közgazdasági jelenség [The data explosion as an economic phenomenon]," Közgazdasági Szemle (Economic Review - monthly of the Hungarian Academy of Sciences), Közgazdasági Szemle Alapítvány (Economic Review Foundation), vol. 0(10), pages 877-889.
    18. Junsang Yu & Hayoung Oh, 2023. "AI-Based Degradation Index from the Microstructure Image and Life Prediction Models Based on Bayesian Inference," Sustainability, MDPI, vol. 15(9), pages 1-40, April.
    19. Caruso, Germán & Scartascini, Carlos & Tommasi, Mariano, 2015. "Are we all playing the same game? The economic effects of constitutions depend on the degree of institutionalization," European Journal of Political Economy, Elsevier, vol. 38(C), pages 212-228.
    20. David John A. & Pasteur R. Drew & Ahmad M. Saif & Janning Michael C., 2011. "NFL Prediction using Committees of Artificial Neural Networks," Journal of Quantitative Analysis in Sports, De Gruyter, vol. 7(2), pages 1-15, May.

    More about this item

    Keywords

    profiling; segmentation; penetration analysis; cluster analysis;
    All these keywords.

    JEL classification:

    • M30 - Business Administration and Business Economics; Marketing; Accounting; Personnel Economics - - Marketing and Advertising - - - General

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:aio:manmar:v:6:y:2008:i:1:p:175-184. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catalin Barbu (email available below). General contact details of provider: https://edirc.repec.org/data/fecraro.html .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.