IDEAS home Printed from https://ideas.repec.org/a/aif/journl/v5y2021i6p174-182.html
   My bibliography  Save this article

Deep learning Utilization in SDN Networks: A Review

Author

Listed:
  • Shavan Askar

    (Assistant Professor, CEO of Arcella Telecom, College of Engineering, Erbil Polytechnic University, Erbil, Iraq.)

  • Kosrat Dlshad Ahmed

    (Information System Engineering, Erbil Polytechnic University, Erbil, Iraq.)

  • Shahab Wahhab Kareem

    (Lecturer, Erbil Polytechnic University, Erbil, Iraq.)

Abstract

The contexts of SDN or Software Defined Network deliver increased level of programmable and functionality within the network development, network configuration and development of the dynamic management in the software protocol. SDN concept also provides centralized management and development approach for the network selection, network control and data plans. In this paper, different deep learning models and technical processes for the SDN networks have been reviewed.

Suggested Citation

  • Shavan Askar & Kosrat Dlshad Ahmed & Shahab Wahhab Kareem, 2021. "Deep learning Utilization in SDN Networks: A Review," International Journal of Science and Business, IJSAB International, vol. 5(6), pages 174-182.
  • Handle: RePEc:aif:journl:v:5:y:2021:i:6:p:174-182
    as

    Download full text from publisher

    File URL: https://ijsab.com/wp-content/uploads/754.pdf
    Download Restriction: no

    File URL: https://ijsab.com/volume-5-issue-6/4224
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Chnar Mustaf Mohammed & Shavan Askar, 2021. "Machine Learning for IoT HealthCare Applications: A Review," International Journal of Science and Business, IJSAB International, vol. 5(3), pages 42-51.
    2. Glena Aziz Qadir & Shavan Askar, 2021. "Software Defined Network Based VANET," International Journal of Science and Business, IJSAB International, vol. 5(3), pages 83-91.
    3. Zhwan Mohammed Khalid & Shavan Askar, 2021. "Resistant Blockchain Cryptography to Quantum Computing Attacks," International Journal of Science and Business, IJSAB International, vol. 5(3), pages 116-125.
    4. Baydaa Hassan Husain & Shavan Askar, 2021. "Survey on Edge Computing Security," International Journal of Science and Business, IJSAB International, vol. 5(3), pages 52-60.
    5. Kosrat Dlshad Ahmed & Shavan Askar, 2021. "Deep Learning Models for Cyber Security in IoT Networks: A Review," International Journal of Science and Business, IJSAB International, vol. 5(3), pages 61-70.
    6. Volodymyr Mnih & Koray Kavukcuoglu & David Silver & Andrei A. Rusu & Joel Veness & Marc G. Bellemare & Alex Graves & Martin Riedmiller & Andreas K. Fidjeland & Georg Ostrovski & Stig Petersen & Charle, 2015. "Human-level control through deep reinforcement learning," Nature, Nature, vol. 518(7540), pages 529-533, February.
    7. Zhala Jameel Hamad & Shavan Askar, 2021. "Machine Learning Powered IoT for Smart Applications," International Journal of Science and Business, IJSAB International, vol. 5(3), pages 92-100.
    8. Ibrahim Shamal Abdulkhaleq & Shavan Askar, 2021. "Evaluating the Impact of Network Latency on the Safety of Blockchain Transactions," International Journal of Science and Business, IJSAB International, vol. 5(3), pages 71-82.
    9. Kurdistan Ali & Shavan Askar, 2021. "Security Issues and Vulnerability of IoT Devices," International Journal of Science and Business, IJSAB International, vol. 5(3), pages 101-115.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Shavan Askar & Kurdistan Ali & Tarik A. Rashid, 2021. "Fog Computing Based IoT System: A Review," International Journal of Science and Business, IJSAB International, vol. 5(6), pages 183-196.
    2. Shavan Askar & Faris Keti, 2021. "Performance Evaluation of Different SDN Controllers," International Journal of Science and Business, IJSAB International, vol. 5(6), pages 67-80.
    3. Shavan Askar & Baydaa Hassan Husain & Tarik A. Rashid, 2021. "SDN Based Fog Computing: A Review," International Journal of Science and Business, IJSAB International, vol. 5(6), pages 117-130.
    4. Shavan Askar & Glena Aziz Qadir & Tarik A. Rashid, 2021. "SDN Based 5G VANET: A Review," International Journal of Science and Business, IJSAB International, vol. 5(6), pages 131-147.
    5. Shavan Askar & Zhwan Mohammed Khalid & Tarik A. Rashid, 2021. "Blockchain For Securing IoT Devices: A Review," International Journal of Science and Business, IJSAB International, vol. 5(6), pages 209-224.
    6. Shavan Askar & Zhala Jameel Hamad & Shahab Wahhab Kareem, 2021. "Deep Learning and Fog Computing: A Review," International Journal of Science and Business, IJSAB International, vol. 5(6), pages 197-208.
    7. Shavan Askar & Ibrahim Shamal Abdulkhaleq & Shahab Wahhab Kareem, 2021. "Blockchain systems: analysis, applications, & risks," International Journal of Science and Business, IJSAB International, vol. 5(6), pages 163-173.
    8. Shavan Askar & Chnar Mustaf Mohammed & Shahab Wahhab Kareem, 2021. "Deep Learning in IoT systems: A Review," International Journal of Science and Business, IJSAB International, vol. 5(6), pages 131-147.
    9. Hindreen Rashid Abdulqadir & Nawzat Sadiq Ahmed, 2021. "Fog Computing Analysis Based on Internet of Thing: A Review," International Journal of Science and Business, IJSAB International, vol. 5(3), pages 137-147.
    10. Tulika Saha & Sriparna Saha & Pushpak Bhattacharyya, 2020. "Towards sentiment aided dialogue policy learning for multi-intent conversations using hierarchical reinforcement learning," PLOS ONE, Public Library of Science, vol. 15(7), pages 1-28, July.
    11. Mahmoud Mahfouz & Angelos Filos & Cyrine Chtourou & Joshua Lockhart & Samuel Assefa & Manuela Veloso & Danilo Mandic & Tucker Balch, 2019. "On the Importance of Opponent Modeling in Auction Markets," Papers 1911.12816, arXiv.org.
    12. Imen Azzouz & Wiem Fekih Hassen, 2023. "Optimization of Electric Vehicles Charging Scheduling Based on Deep Reinforcement Learning: A Decentralized Approach," Energies, MDPI, vol. 16(24), pages 1-18, December.
    13. Jacob W. Crandall & Mayada Oudah & Tennom & Fatimah Ishowo-Oloko & Sherief Abdallah & Jean-François Bonnefon & Manuel Cebrian & Azim Shariff & Michael A. Goodrich & Iyad Rahwan, 2018. "Cooperating with machines," Nature Communications, Nature, vol. 9(1), pages 1-12, December.
      • Abdallah, Sherief & Bonnefon, Jean-François & Cebrian, Manuel & Crandall, Jacob W. & Ishowo-Oloko, Fatimah & Oudah, Mayada & Rahwan, Iyad & Shariff, Azim & Tennom,, 2017. "Cooperating with Machines," TSE Working Papers 17-806, Toulouse School of Economics (TSE).
      • Abdallah, Sherief & Bonnefon, Jean-François & Cebrian, Manuel & Crandall, Jacob W. & Ishowo-Oloko, Fatimah & Oudah, Mayada & Rahwan, Iyad & Shariff, Azim & Tennom,, 2017. "Cooperating with Machines," IAST Working Papers 17-68, Institute for Advanced Study in Toulouse (IAST).
      • Jacob Crandall & Mayada Oudah & Fatimah Ishowo-Oloko Tennom & Fatimah Ishowo-Oloko & Sherief Abdallah & Jean-François Bonnefon & Manuel Cebrian & Azim Shariff & Michael Goodrich & Iyad Rahwan, 2018. "Cooperating with machines," Post-Print hal-01897802, HAL.
    14. Sun, Alexander Y., 2020. "Optimal carbon storage reservoir management through deep reinforcement learning," Applied Energy, Elsevier, vol. 278(C).
    15. Yassine Chemingui & Adel Gastli & Omar Ellabban, 2020. "Reinforcement Learning-Based School Energy Management System," Energies, MDPI, vol. 13(23), pages 1-21, December.
    16. Woo Jae Byun & Bumkyu Choi & Seongmin Kim & Joohyun Jo, 2023. "Practical Application of Deep Reinforcement Learning to Optimal Trade Execution," FinTech, MDPI, vol. 2(3), pages 1-16, June.
    17. Lu, Yu & Xiang, Yue & Huang, Yuan & Yu, Bin & Weng, Liguo & Liu, Junyong, 2023. "Deep reinforcement learning based optimal scheduling of active distribution system considering distributed generation, energy storage and flexible load," Energy, Elsevier, vol. 271(C).
    18. Yuhong Wang & Lei Chen & Hong Zhou & Xu Zhou & Zongsheng Zheng & Qi Zeng & Li Jiang & Liang Lu, 2021. "Flexible Transmission Network Expansion Planning Based on DQN Algorithm," Energies, MDPI, vol. 14(7), pages 1-21, April.
    19. Huang, Ruchen & He, Hongwen & Gao, Miaojue, 2023. "Training-efficient and cost-optimal energy management for fuel cell hybrid electric bus based on a novel distributed deep reinforcement learning framework," Applied Energy, Elsevier, vol. 346(C).
    20. Michelle M. LaMar, 2018. "Markov Decision Process Measurement Model," Psychometrika, Springer;The Psychometric Society, vol. 83(1), pages 67-88, March.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:aif:journl:v:5:y:2021:i:6:p:174-182. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Farjana Rahman (email available below). General contact details of provider: .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.