IDEAS home Printed from https://ideas.repec.org/a/aif/journl/v5y2021i3p42-51.html
   My bibliography  Save this article

Machine Learning for IoT HealthCare Applications: A Review

Author

Listed:
  • Chnar Mustaf Mohammed

    (Information System Engineering, Erbil Polytechnic University, Erbil, Iraq)

  • Shavan Askar

    (Erbil Polytechnic University, Erbil, Iraq)

Abstract

Internet of Things and Machine Learning (ML) have wide applicability in many aspects of life, health care is one of them. With the rapid development and improvement of the internet, the conventional strategies for patient services diminished and supplanted with electronic healthcare systems. The use of IoT technology offers medical professionals and patients the most modern medical device environment. IoT things and Machine-Learning are valuable in various classifications from far off observing of the modern climate to mechanical mechanization. Moreover, medical care applications are principally indicating interest in IoT things in view of cost decrease, easy to understand and improve the personal satisfaction of patients. The latest applications for IoT medical treatment, investigated and still facing problems in the clinical environment, are needed for intellectual, creativity-based answers. In specific, portable, and implantable IoT model devices, investigated for calculating the data transmission. Implantable technologies lead to the natural substitution of the injured part of the human body. The creation of a wearable and implantable healthcare body area network faced several challenges that are illustrated in this study. In this paper, an overview of IoT and Machine Learning based on healthcare care demonstrated in detail, the applications that use in health care by incorporating Machine Learning (ML) for the Internet of Things (IoT) listed with all issues and challenges while using this application or devices for health care and their important usage. Also, algorithms used by Machine Learning in IoT for developing devices are indicated by showing previous work and classified each of them according to the used method.

Suggested Citation

  • Chnar Mustaf Mohammed & Shavan Askar, 2021. "Machine Learning for IoT HealthCare Applications: A Review," International Journal of Science and Business, IJSAB International, vol. 5(3), pages 42-51.
  • Handle: RePEc:aif:journl:v:5:y:2021:i:3:p:42-51
    as

    Download full text from publisher

    File URL: https://ijsab.com/wp-content/uploads/684.pdf
    Download Restriction: no

    File URL: https://ijsab.com/volume-5-issue-3/3657
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Glena Aziz Qadir & Shavan Askar, 2021. "Software Defined Network Based VANET," International Journal of Science and Business, IJSAB International, vol. 5(3), pages 83-91.
    2. Mustafa Nizamul Aziz & A.K.M. Monzurul Islam, 2020. "Reviewing Data Mining as an enabling technology for BI," International Journal of Science and Business, IJSAB International, vol. 4(7), pages 46-51.
    3. Jannah Mohammad, 2020. "A framework synthesis by Ad-HOC based Cyber-Physical System for Performance Measure into Peak and off-Peak hours," International Journal of Science and Business, IJSAB International, vol. 4(11), pages 33-39.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Shavan Askar & Kurdistan Ali & Tarik A. Rashid, 2021. "Fog Computing Based IoT System: A Review," International Journal of Science and Business, IJSAB International, vol. 5(6), pages 183-196.
    2. Shavan Askar & Faris Keti, 2021. "Performance Evaluation of Different SDN Controllers," International Journal of Science and Business, IJSAB International, vol. 5(6), pages 67-80.
    3. Shavan Askar & Baydaa Hassan Husain & Tarik A. Rashid, 2021. "SDN Based Fog Computing: A Review," International Journal of Science and Business, IJSAB International, vol. 5(6), pages 117-130.
    4. Shavan Askar & Zhala Jameel Hamad & Shahab Wahhab Kareem, 2021. "Deep Learning and Fog Computing: A Review," International Journal of Science and Business, IJSAB International, vol. 5(6), pages 197-208.
    5. Shavan Askar & Glena Aziz Qadir & Tarik A. Rashid, 2021. "SDN Based 5G VANET: A Review," International Journal of Science and Business, IJSAB International, vol. 5(6), pages 131-147.
    6. Shavan Askar & Ibrahim Shamal Abdulkhaleq & Shahab Wahhab Kareem, 2021. "Blockchain systems: analysis, applications, & risks," International Journal of Science and Business, IJSAB International, vol. 5(6), pages 163-173.
    7. Shavan Askar & Kosrat Dlshad Ahmed & Shahab Wahhab Kareem, 2021. "Deep learning Utilization in SDN Networks: A Review," International Journal of Science and Business, IJSAB International, vol. 5(6), pages 174-182.
    8. Shavan Askar & Zhwan Mohammed Khalid & Tarik A. Rashid, 2021. "Blockchain For Securing IoT Devices: A Review," International Journal of Science and Business, IJSAB International, vol. 5(6), pages 209-224.
    9. Shavan Askar & Chnar Mustaf Mohammed & Shahab Wahhab Kareem, 2021. "Deep Learning in IoT systems: A Review," International Journal of Science and Business, IJSAB International, vol. 5(6), pages 131-147.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Shavan Askar & Faris Keti, 2021. "Performance Evaluation of Different SDN Controllers," International Journal of Science and Business, IJSAB International, vol. 5(6), pages 67-80.
    2. Baydaa Hassan Husain & Shavan Askar, 2021. "Survey on Edge Computing Security," International Journal of Science and Business, IJSAB International, vol. 5(3), pages 52-60.
    3. Ibrahim Shamal Abdulkhaleq & Shavan Askar, 2021. "Evaluating the Impact of Network Latency on the Safety of Blockchain Transactions," International Journal of Science and Business, IJSAB International, vol. 5(3), pages 71-82.
    4. Shavan Askar & Kurdistan Ali & Tarik A. Rashid, 2021. "Fog Computing Based IoT System: A Review," International Journal of Science and Business, IJSAB International, vol. 5(6), pages 183-196.
    5. Shavan Askar & Kosrat Dlshad Ahmed & Shahab Wahhab Kareem, 2021. "Deep learning Utilization in SDN Networks: A Review," International Journal of Science and Business, IJSAB International, vol. 5(6), pages 174-182.
    6. Shavan Askar & Baydaa Hassan Husain & Tarik A. Rashid, 2021. "SDN Based Fog Computing: A Review," International Journal of Science and Business, IJSAB International, vol. 5(6), pages 117-130.
    7. Shavan Askar & Glena Aziz Qadir & Tarik A. Rashid, 2021. "SDN Based 5G VANET: A Review," International Journal of Science and Business, IJSAB International, vol. 5(6), pages 131-147.
    8. Shavan Askar & Zhwan Mohammed Khalid & Tarik A. Rashid, 2021. "Blockchain For Securing IoT Devices: A Review," International Journal of Science and Business, IJSAB International, vol. 5(6), pages 209-224.
    9. Shavan Askar & Zhala Jameel Hamad & Shahab Wahhab Kareem, 2021. "Deep Learning and Fog Computing: A Review," International Journal of Science and Business, IJSAB International, vol. 5(6), pages 197-208.
    10. Zhala Jameel Hamad & Shavan Askar, 2021. "Machine Learning Powered IoT for Smart Applications," International Journal of Science and Business, IJSAB International, vol. 5(3), pages 92-100.
    11. Shavan Askar & Ibrahim Shamal Abdulkhaleq & Shahab Wahhab Kareem, 2021. "Blockchain systems: analysis, applications, & risks," International Journal of Science and Business, IJSAB International, vol. 5(6), pages 163-173.
    12. Shavan Askar & Chnar Mustaf Mohammed & Shahab Wahhab Kareem, 2021. "Deep Learning in IoT systems: A Review," International Journal of Science and Business, IJSAB International, vol. 5(6), pages 131-147.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:aif:journl:v:5:y:2021:i:3:p:42-51. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Farjana Rahman (email available below). General contact details of provider: .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.