IDEAS home Printed from https://ideas.repec.org/a/ags/polvaa/262397.html
   My bibliography  Save this article

Determinanty nożyc cen w rolnictwie krajów Unii Europejskiej o zróżnicowanej strukturze agrarnej

Author

Listed:
  • Czyżewski, Bazyli
  • Matuszczak, Anna

Abstract

Wskaźnik produkcji rolnej ( agricultural goods output ) obejmuje ważone zmiany cen surowców rolnych, podczas gdy wskaźnik zużycia pośredniego opisuje ceny nakładów, takie jak: nasiona, sadzonki, energia, nawozy, polepszacze gleby, środki ochrony roślin lub pasz. Stosunek tych dwóch wskaźników jest definiowany jako „luka cenowa” lub „nożyce cen”. W literaturze przedmiotu istnieje wiele modeli wyjaśniania cen produktów rolnych. Jednak kwestia determinant luki cenowej jest rzadko badana. Z tego powodu autorzy postawili sobie za cel oszacowanie długoterminowych modeli regresji luki ceno- wej w rolnictwie dla wybranych krajów europejskich, które reprezentują różne struktury agrarne. Powadzona analiza zakłada kilka etapów. W pierwszym z nich długoterminowe indeksy cenowe (od 1980 do 2014 roku) zostały obliczone na podstawie danych Eurostatu i FAOSTAT dla wszystkich dostępnych produktów rolnych i nakładów w krajach UE-27. Następnie zagregowane indeksy ważono wielkością produkcji lub konsumpcji pośredniej na podstawie średnich wskaźników cen dla poszczególnych nakładów lub efektów. W dru- gim etapie przeprowadzono analizę skupień opartą na wykorzystaniu czynnika ziemi przez poszczególne gospodarstwa rolne w krajach UE-27. W trzecim etapie wybrano do badań po trzy kraje reprezentujące najbar dziej skrajne z wyróżnionych klastrów (z rolni- ctwem rozdrobnionym oraz wysokowydajnym, silnym ekonomicznie) i oszacowano dla ich rolnictwa modele ekonometryczne luki cenowej, gdzie indeksy efektów i nakładów są zmiennymi niezależnymi. Interesująca jest ob serwacja, że marginalne efekty są znacznie silniejsze w modelach dla krajów, gdzie mamy do czynienia z rolnictwem intensywnym i na dużą skalę (jak we Francji, Wielkiej Brytanii i Danii), aniżeli w krajach o rozdrobnionej strukturze agrarnej, takich jak Grecja, Portugalia i Irlandia. ----- The index of agricultural goods output comprises weighted changes of prices of agricultural commodities whereas the index of intermediate consumption describes fluc tuations of input prices, including seeds and nursery stock, energy, fertilizers, soil im provers, plant protection products or feedstuffs. The relation of these two indices is defined as “price gap” or “price scissors”. There are a lot of price models for agricultural goods in the literature. However , the issue of modeling drivers for the price gap has rarely been explored. For that reason the authors aim to estimate long-term regression models of the agricultural price gap for different European countries that represent varied agrarian structures. The analysis entails a few stages. In the first stage, the long-term price indices (from 1980 to 2014) were computed based on EUROSTAT and FAOSTAT agricultural prices data for all available agricultural products and inputs in the EU-27. Then, the aggregated indices were weighted with a volume of production or intermediate consumption on the basis of the average price indices for the respective outputs or inputs. In the second stage, a cluster analysis was carried out with regard to the utilization of agricultural land factor by individual farms in the subsequent European Union Member States. In the third stage, three countries were chosen for case studies from each of the distinguished clusters and the econometric models of price gap were estimated where the indices of outputs and inputs were independent variables. An interesting finding was made that marginal effects for price gap drivers were much stronger in the countries of an intensive and large scale agriculture (such as France, the UK and Denmark) than in the countries of fragmented agrarian structures such as Greece, Portugal and Ireland.

Suggested Citation

  • Czyżewski, Bazyli & Matuszczak, Anna, 2016. "Determinanty nożyc cen w rolnictwie krajów Unii Europejskiej o zróżnicowanej strukturze agrarnej," Village and Agriculture (Wieś i Rolnictwo), Polish Academy of Sciences (IRWiR PAN), Institute of Rural and Agricultural Development, vol. 3(172), January.
  • Handle: RePEc:ags:polvaa:262397
    DOI: 10.22004/ag.econ.262397
    as

    Download full text from publisher

    File URL: https://ageconsearch.umn.edu/record/262397/files/7ddf44ea76c07b5fb942f8510d7a.pdf
    Download Restriction: no

    File URL: https://ageconsearch.umn.edu/record/262397/files/7ddf44ea76c07b5fb942f8510d7a.pdf?subformat=pdfa
    Download Restriction: no

    File URL: https://libkey.io/10.22004/ag.econ.262397?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    References listed on IDEAS

    as
    1. Bollerslev, Tim, 1987. "A Conditionally Heteroskedastic Time Series Model for Speculative Prices and Rates of Return," The Review of Economics and Statistics, MIT Press, vol. 69(3), pages 542-547, August.
    2. Kai-Li Wang & Christopher Fawson & Christopher B. Barrett & James B. McDonald, 2001. "A flexible parametric GARCH model with an application to exchange rates," Journal of Applied Econometrics, John Wiley & Sons, Ltd., vol. 16(4), pages 521-536.
    3. Poczta-Wajda, Agnieszka, 2015. "Why ‟Rich Farmers” Demand Financial Support?," Roczniki (Annals), Polish Association of Agricultural Economists and Agribusiness - Stowarzyszenie Ekonomistow Rolnictwa e Agrobiznesu (SERiA), vol. 2015(4), August.
    4. Seung-Ryong Yang & B. Wade Brorsen, 1992. "Nonlinear Dynamics of Daily Cash Prices," American Journal of Agricultural Economics, Agricultural and Applied Economics Association, vol. 74(3), pages 706-715.
    5. Charles B. Moss, 1992. "The Cost-Price Squeeze in Agriculture: An Application of Cointegration," Review of Agricultural Economics, Agricultural and Applied Economics Association, vol. 14(2), pages 205-213.
    6. Pius V. Fischer, 2006. "Rent-Seeking, Institutions and Reforms In Africa," Springer Books, Springer, number 978-0-387-33773-9, October.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Yi-Ting Chen, 2008. "A unified approach to standardized-residuals-based correlation tests for GARCH-type models," Journal of Applied Econometrics, John Wiley & Sons, Ltd., vol. 23(1), pages 111-133.
    2. Emese Lazar & Carol Alexander, 2006. "Normal mixture GARCH(1,1): applications to exchange rate modelling," Journal of Applied Econometrics, John Wiley & Sons, Ltd., vol. 21(3), pages 307-336.
    3. Ramirez, Octavio A. & Fadiga, Mohamadou L., 2003. "Forecasting Agricultural Commodity Prices with Asymmetric-Error GARCH Models," Journal of Agricultural and Resource Economics, Western Agricultural Economics Association, vol. 28(1), pages 1-15, April.
    4. Leonidas Tsiaras, 2010. "Dynamic Models of Exchange Rate Dependence Using Option Prices and Historical Returns," CREATES Research Papers 2010-35, Department of Economics and Business Economics, Aarhus University.
    5. Lai, Jing-Yi & Myers, Robert J. & Hanson, Steven D., 2001. "Optimal Post-Harvest Grains Storage By Risk Averse Farmers," Staff Paper Series 11739, Michigan State University, Department of Agricultural, Food, and Resource Economics.
    6. Amilon, Henrik, 2008. "Estimation of an adaptive stock market model with heterogeneous agents," Journal of Empirical Finance, Elsevier, vol. 15(2), pages 342-362, March.
    7. repec:wyi:journl:002099 is not listed on IDEAS
    8. Wilson Ye Chen & Richard H. Gerlach, 2017. "Semiparametric GARCH via Bayesian model averaging," Papers 1708.07587, arXiv.org.
    9. Hueng, C. James & McDonald, James B., 2005. "Forecasting asymmetries in aggregate stock market returns: Evidence from conditional skewness," Journal of Empirical Finance, Elsevier, vol. 12(5), pages 666-685, December.
    10. Park, Sung Y. & Bera, Anil K., 2009. "Maximum entropy autoregressive conditional heteroskedasticity model," Journal of Econometrics, Elsevier, vol. 150(2), pages 219-230, June.
    11. Chorro, Christophe & Guégan, Dominique & Ielpo, Florian & Lalaharison, Hanjarivo, 2018. "Testing for leverage effects in the returns of US equities," Journal of Empirical Finance, Elsevier, vol. 48(C), pages 290-306.
    12. C. James Hueng & Ruey Yau, 2006. "Investor preferences and portfolio selection: is diversification an appropriate strategy?," Quantitative Finance, Taylor & Francis Journals, vol. 6(3), pages 255-271.
    13. Du, Wen, 2004. "International Market Integration Under Wto: Evidence In The Price Behaviors Of Chinese And Us Wheat Futures," 2004 Annual meeting, August 1-4, Denver, CO 20115, American Agricultural Economics Association (New Name 2008: Agricultural and Applied Economics Association).
    14. Choi, Pilsun & Nam, Kiseok, 2008. "Asymmetric and leptokurtic distribution for heteroscedastic asset returns: The SU-normal distribution," Journal of Empirical Finance, Elsevier, vol. 15(1), pages 41-63, January.
    15. Lai, Jing-Yi & Myers, Robert J. & Hanson, Steven D., 2003. "Optimal On-Farm Grain Storage by Risk-Averse Farmers," Journal of Agricultural and Resource Economics, Western Agricultural Economics Association, vol. 28(3), pages 1-22, December.
    16. Harvey, Andrew & Sucarrat, Genaro, 2014. "EGARCH models with fat tails, skewness and leverage," Computational Statistics & Data Analysis, Elsevier, vol. 76(C), pages 320-338.
    17. Markus Haas, 2004. "Mixed Normal Conditional Heteroskedasticity," Journal of Financial Econometrics, Oxford University Press, vol. 2(2), pages 211-250.
    18. Elyasiani, Elyas & Mansur, Iqbal, 2017. "Hedge fund return, volatility asymmetry, and systemic effects: A higher-moment factor-EGARCH model," Journal of Financial Stability, Elsevier, vol. 28(C), pages 49-65.
    19. Rasmus S. Pedersen & Anders Rahbek, 2014. "Multivariate variance targeting in the BEKK–GARCH model," Econometrics Journal, Royal Economic Society, vol. 17(1), pages 24-55, February.
    20. Shively, Gerald E., 2001. "Price thresholds, price volatility, and the private costs of investment in a developing country grain market," Economic Modelling, Elsevier, vol. 18(3), pages 399-414, August.
    21. Bohl, Martin T. & Diesteldorf, Jeanne & Siklos, Pierre L., 2015. "The effect of index futures trading on volatility: Three markets for Chinese stocks," China Economic Review, Elsevier, vol. 34(C), pages 207-224.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:ags:polvaa:262397. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: AgEcon Search (email available below). General contact details of provider: https://edirc.repec.org/data/irwirpl.html .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.