IDEAS home Printed from https://ideas.repec.org/a/ags/joaaec/15449.html
   My bibliography  Save this article

Forecasting Fed Cattle, Feeder Cattle, And Corn Cash Price Volatility: The Accuracy Of Time Series, Implied Volatility, And Composite Approaches

Author

Listed:
  • Manfredo, Mark R.
  • Leuthold, Raymond M.
  • Irwin, Scott H.

Abstract

Economists and others need estimates of future cash price volatility to use in risk management evaluation and education programs. This paper evaluates the performance of alternative volatility forecasts for fed cattle, feeder cattle, and corn cash price returns. Forecasts include time series (e.g. GARCH), implied volatility from options on futures contracts, and composite specifications. The overriding finding from this research, consistent with the existing volatility forecasting literature, is that no single method of volatility forecasting provides superior accuracy across alternative data sets and horizons. However, evidence is provided suggesting that risk managers and extension educators use composite methods when both time series implied volatilities are available.

Suggested Citation

  • Manfredo, Mark R. & Leuthold, Raymond M. & Irwin, Scott H., 2001. "Forecasting Fed Cattle, Feeder Cattle, And Corn Cash Price Volatility: The Accuracy Of Time Series, Implied Volatility, And Composite Approaches," Journal of Agricultural and Applied Economics, Southern Agricultural Economics Association, vol. 33(3), pages 1-16, December.
  • Handle: RePEc:ags:joaaec:15449
    DOI: 10.22004/ag.econ.15449
    as

    Download full text from publisher

    File URL: https://ageconsearch.umn.edu/record/15449/files/33030523.pdf
    Download Restriction: no

    File URL: https://libkey.io/10.22004/ag.econ.15449?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    Other versions of this item:

    References listed on IDEAS

    as
    1. Beckers, Stan, 1981. "Standard deviations implied in option prices as predictors of future stock price variability," Journal of Banking & Finance, Elsevier, vol. 5(3), pages 363-381, September.
    2. Andersen, Torben G & Bollerslev, Tim, 1998. "Answering the Skeptics: Yes, Standard Volatility Models Do Provide Accurate Forecasts," International Economic Review, Department of Economics, University of Pennsylvania and Osaka University Institute of Social and Economic Research Association, vol. 39(4), pages 885-905, November.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Benavides, Guillermo & Capistrán, Carlos, 2012. "Forecasting exchange rate volatility: The superior performance of conditional combinations of time series and option implied forecasts," Journal of Empirical Finance, Elsevier, vol. 19(5), pages 627-639.
    2. Benavides Guillermo, 2010. "Forecasting Short-Run Inflation Volatility using Futures Prices: An Empirical Analysis from a Value at Risk Perspective," Working Papers 2010-12, Banco de México.
    3. Bekkerman, Anton & Pelletier, Denis, 2009. "Basis Volatilities of Corn and Soybean in Spatially Separated Markets: The Effect of Ethanol Demand," 2009 Annual Meeting, July 26-28, 2009, Milwaukee, Wisconsin 49281, Agricultural and Applied Economics Association.
    4. Benavides Guillermo, 2020. "Asymmetric Volatility Effects in Risk Management: An Empirical Analysis using a Stock Index Futures," Working Papers 2020-10, Banco de México.
    5. Guillermo Benavides, 2010. "Forecasting Short-Run Inflation Volatility using Futures Prices: An Empirical Analysis from a Value at Risk Perspective," Revista de Administración, Finanzas y Economía (Journal of Management, Finance and Economics), Tecnológico de Monterrey, Campus Ciudad de México, vol. 4(2), pages 1-27.
    6. Guillermo Benavides, 2021. "Asymmetric Volatility Relevance in Risk Management: An Empirical Analysis using Stock Index Futures," Remef - Revista Mexicana de Economía y Finanzas Nueva Época REMEF (The Mexican Journal of Economics and Finance), Instituto Mexicano de Ejecutivos de Finanzas, IMEF, vol. 16(TNEA), pages 1-18, Septiembr.
    7. Rosa, Franco & Vasciaveo, Michela, 2012. "Volatility in US and Italian agricultural markets, interactions and policy evaluation," 123rd Seminar, February 23-24, 2012, Dublin, Ireland 122530, European Association of Agricultural Economists.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Koopman, Siem Jan & Jungbacker, Borus & Hol, Eugenie, 2005. "Forecasting daily variability of the S&P 100 stock index using historical, realised and implied volatility measurements," Journal of Empirical Finance, Elsevier, vol. 12(3), pages 445-475, June.
    2. Eugenie Hol & Siem Jan Koopman, 2000. "Forecasting the Variability of Stock Index Returns with Stochastic Volatility Models and Implied Volatility," Tinbergen Institute Discussion Papers 00-104/4, Tinbergen Institute.
    3. Wu, Guojun & Xiao, Zhijie, 2002. "A generalized partially linear model of asymmetric volatility," Journal of Empirical Finance, Elsevier, vol. 9(3), pages 287-319, August.
    4. Ser-Huang Poon & Clive W.J. Granger, 2003. "Forecasting Volatility in Financial Markets: A Review," Journal of Economic Literature, American Economic Association, vol. 41(2), pages 478-539, June.
    5. Neely, Christopher J., 2009. "Forecasting foreign exchange volatility: Why is implied volatility biased and inefficient? And does it matter?," Journal of International Financial Markets, Institutions and Money, Elsevier, vol. 19(1), pages 188-205, February.
    6. Tsiaras, Leonidas, 2009. "The Forecast Performance of Competing Implied Volatility Measures: The Case of Individual Stocks," Finance Research Group Working Papers F-2009-02, University of Aarhus, Aarhus School of Business, Department of Business Studies.
    7. Viteva, Svetlana & Veld-Merkoulova, Yulia V. & Campbell, Kevin, 2014. "The forecasting accuracy of implied volatility from ECX carbon options," Energy Economics, Elsevier, vol. 45(C), pages 475-484.
    8. Chao Liang & Yu Wei & Yaojie Zhang, 2020. "Is implied volatility more informative for forecasting realized volatility: An international perspective," Journal of Forecasting, John Wiley & Sons, Ltd., vol. 39(8), pages 1253-1276, December.
    9. Peng, Qing & Li, Jie & Zhao, Yu & Wu, Han, 2021. "The informational content of implied volatility: Application to the USD/JPY exchange rates," Journal of Asian Economics, Elsevier, vol. 76(C).
    10. Manfredo, Mark R. & Sanders, Dwight R., 2002. "The Information Content Of Implied Volatility From Options On Agricultural Futures Contracts," 2002 Conference, April 22-23, 2002, St. Louis, Missouri 19071, NCR-134 Conference on Applied Commodity Price Analysis, Forecasting, and Market Risk Management.
    11. Hillebrand, Eric & Schnabl, Gunther & Ulu, Yasemin, 2009. "Japanese foreign exchange intervention and the yen-to-dollar exchange rate: A simultaneous equations approach using realized volatility," Journal of International Financial Markets, Institutions and Money, Elsevier, vol. 19(3), pages 490-505, July.
    12. Christophe Chorro & Florian Ielpo & Benoît Sévi, 2017. "The contribution of jumps to forecasting the density of returns," Post-Print halshs-01442618, HAL.
    13. Gkillas, Konstantinos & Gupta, Rangan & Pierdzioch, Christian, 2020. "Forecasting realized oil-price volatility: The role of financial stress and asymmetric loss," Journal of International Money and Finance, Elsevier, vol. 104(C).
    14. Tihana Škrinjarić, 2019. "Time Varying Spillovers between the Online Search Volume and Stock Returns: Case of CESEE Markets," IJFS, MDPI, vol. 7(4), pages 1-30, October.
    15. Woerner Jeannette H. C., 2003. "Variational sums and power variation: a unifying approach to model selection and estimation in semimartingale models," Statistics & Risk Modeling, De Gruyter, vol. 21(1), pages 47-68, January.
    16. Grace Lee Ching Yap, 2020. "Optimal Filter Approximations for Latent Long Memory Stochastic Volatility," Computational Economics, Springer;Society for Computational Economics, vol. 56(2), pages 547-568, August.
    17. Raggi, Davide & Bordignon, Silvano, 2012. "Long memory and nonlinearities in realized volatility: A Markov switching approach," Computational Statistics & Data Analysis, Elsevier, vol. 56(11), pages 3730-3742.
    18. Manabu Asai & Rangan Gupta & Michael McAleer, 2019. "The Impact of Jumps and Leverage in Forecasting the Co-Volatility of Oil and Gold Futures," Energies, MDPI, vol. 12(17), pages 1-17, September.
    19. Athanasia Gavala & Nikolay Gospodinov & Deming Jiang, 2006. "Forecasting volatility," Journal of Forecasting, John Wiley & Sons, Ltd., vol. 25(6), pages 381-400.
    20. Takahashi, Makoto & Watanabe, Toshiaki & Omori, Yasuhiro, 2016. "Volatility and quantile forecasts by realized stochastic volatility models with generalized hyperbolic distribution," International Journal of Forecasting, Elsevier, vol. 32(2), pages 437-457.

    More about this item

    Keywords

    Demand and Price Analysis;

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:ags:joaaec:15449. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: AgEcon Search (email available below). General contact details of provider: https://edirc.repec.org/data/saeaaea.html .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.