IDEAS home Printed from https://ideas.repec.org/a/ags/ifaamr/188711.html
   My bibliography  Save this article

Manure as a Resource: Livestock Waste Management from Anaerobic Digestion, Opportunities and Challenges for Brazil

Author

Listed:
  • Mathias, João Felippe Cury Marinho

Abstract

The idea of looking at manure as a resource, not a waste, has been central to much of the more recent thinking on the whole subject of good farm management. That is also the central idea of the present study, which maintains that the lessons of international experience suggest that the development of biogas systems is important for farm waste management. Brazil is abundant in livestock waste resources, but its livestock production management is very inefficient, particularly in the small rural properties. The objective of this article is to study the environmental impact of intensive livestock production systems and how the use of biodigesters should be an option in waste treatment and management.

Suggested Citation

  • Mathias, João Felippe Cury Marinho, 2014. "Manure as a Resource: Livestock Waste Management from Anaerobic Digestion, Opportunities and Challenges for Brazil," International Food and Agribusiness Management Review, International Food and Agribusiness Management Association, vol. 17(4), pages 1-24, November.
  • Handle: RePEc:ags:ifaamr:188711
    DOI: 10.22004/ag.econ.188711
    as

    Download full text from publisher

    File URL: https://ageconsearch.umn.edu/record/188711/files/201300804.pdf
    Download Restriction: no

    File URL: https://libkey.io/10.22004/ag.econ.188711?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    References listed on IDEAS

    as
    1. Batzias, F.A. & Sidiras, D.K. & Spyrou, E.K., 2005. "Evaluating livestock manures for biogas production: a GIS based method," Renewable Energy, Elsevier, vol. 30(8), pages 1161-1176.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Valdemir Antoneli & Ana Caroline Mosele & João Anésio Bednarz & Manuel Pulido-Fernández & Javier Lozano-Parra & Saskia Deborah Keesstra & Jesús Rodrigo-Comino, 2019. "Effects of Applying Liquid Swine Manure on Soil Quality and Yield Production in Tropical Soybean Crops (Paraná, Brazil)," Sustainability, MDPI, vol. 11(14), pages 1-11, July.
    2. Karel Šrédl & Marie Prášilová & Lucie Severová & Roman Svoboda & Michal Štěbeták, 2021. "Social and Economic Aspects of Sustainable Development of Livestock Production and Meat Consumption in the Czech Republic," Agriculture, MDPI, vol. 11(2), pages 1-23, January.
    3. Assem Abu Hatab & Maria Eduarda Rigo Cavinato & Carl Johan Lagerkvist, 2019. "Urbanization, livestock systems and food security in developing countries: A systematic review of the literature," Food Security: The Science, Sociology and Economics of Food Production and Access to Food, Springer;The International Society for Plant Pathology, vol. 11(2), pages 279-299, April.
    4. Caiado Couto, Lilia & Campos, Luiza C. & da Fonseca-Zang, Warde & Zang, Joachim & Bleischwitz, Raimund, 2021. "Water, waste, energy and food nexus in Brazil: Identifying a resource interlinkage research agenda through a systematic review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 138(C).

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Sekeroglu, Ahmet & Erol, Demet, 2023. "Site selection modeling of hybrid renewable energy facilities using suitability index in spatial planning," Renewable Energy, Elsevier, vol. 219(P1).
    2. Jiseok Hong & Changwon Chae & Hyunjoong Kim & Hyeokjun Kwon & Jisu Kim & Ijung Kim, 2023. "Investigation to Enhance Solid Fuel Quality in Torrefaction of Cow Manure," Energies, MDPI, vol. 16(11), pages 1-13, June.
    3. Soha, Tamás & Papp, Luca & Csontos, Csaba & Munkácsy, Béla, 2021. "The importance of high crop residue demand on biogas plant site selection, scaling and feedstock allocation – A regional scale concept in a Hungarian study area," Renewable and Sustainable Energy Reviews, Elsevier, vol. 141(C).
    4. Francesca Valenti & Simona M. C. Porto, 2019. "Net Electricity and Heat Generated by Reusing Mediterranean Agro-Industrial By-Products," Energies, MDPI, vol. 12(3), pages 1-15, February.
    5. Calvert, K., 2011. "Geomatics and bioenergy feasibility assessments: Taking stock and looking forward," Renewable and Sustainable Energy Reviews, Elsevier, vol. 15(2), pages 1117-1124, February.
    6. Deng, Yanfei & Xu, Jiuping & Liu, Ying & Mancl, Karen, 2014. "Biogas as a sustainable energy source in China: Regional development strategy application and decision making," Renewable and Sustainable Energy Reviews, Elsevier, vol. 35(C), pages 294-303.
    7. Höhn, J. & Lehtonen, E. & Rasi, S. & Rintala, J., 2014. "A Geographical Information System (GIS) based methodology for determination of potential biomasses and sites for biogas plants in southern Finland," Applied Energy, Elsevier, vol. 113(C), pages 1-10.
    8. Karthik Rajendran & Solmaz Aslanzadeh & Mohammad J. Taherzadeh, 2012. "Household Biogas Digesters—A Review," Energies, MDPI, vol. 5(8), pages 1-32, August.
    9. Zalengera, Collen & Blanchard, Richard E. & Eames, Philip C. & Juma, Alnord M. & Chitawo, Maxon L. & Gondwe, Kondwani T., 2014. "Overview of the Malawi energy situation and A PESTLE analysis for sustainable development of renewable energy," Renewable and Sustainable Energy Reviews, Elsevier, vol. 38(C), pages 335-347.
    10. Jun Hou & Weifeng Zhang & Pei Wang & Zhengxia Dou & Liwei Gao & David Styles, 2017. "Greenhouse Gas Mitigation of Rural Household Biogas Systems in China: A Life Cycle Assessment," Energies, MDPI, vol. 10(2), pages 1-14, February.
    11. Oniszk-Popławska, Anna & Matyka, Mariusz & Ryńska, Elżbieta Dagny, 2014. "Evaluation of a long-term potential for the development of agricultural biogas plants: A case study for the Lubelskie Province, Poland," Renewable and Sustainable Energy Reviews, Elsevier, vol. 36(C), pages 329-349.
    12. Fuchs, Werner & Wang, Xuemei & Gabauer, Wolfgang & Ortner, Markus & Li, Zifu, 2018. "Tackling ammonia inhibition for efficient biogas production from chicken manure: Status and technical trends in Europe and China," Renewable and Sustainable Energy Reviews, Elsevier, vol. 97(C), pages 186-199.
    13. Agnieszka Wawrzyniak & Andrzej Przybylak & Piotr Boniecki & Agnieszka Sujak & Maciej Zaborowicz, 2023. "Neural Modelling in the Study of the Relationship between Herd Structure, Amount of Manure and Slurry Produced, and Location of Herds in Poland," Agriculture, MDPI, vol. 13(7), pages 1-13, July.
    14. Gómez, Antonio & Zubizarreta, Javier & Rodrigues, Marcos & Dopazo, César & Fueyo, Norberto, 2010. "Potential and cost of electricity generation from human and animal waste in Spain," Renewable Energy, Elsevier, vol. 35(2), pages 498-505.
    15. Angelis-Dimakis, Athanasios & Biberacher, Markus & Dominguez, Javier & Fiorese, Giulia & Gadocha, Sabine & Gnansounou, Edgard & Guariso, Giorgio & Kartalidis, Avraam & Panichelli, Luis & Pinedo, Irene, 2011. "Methods and tools to evaluate the availability of renewable energy sources," Renewable and Sustainable Energy Reviews, Elsevier, vol. 15(2), pages 1182-1200, February.
    16. Calvert, K. & Pearce, J.M. & Mabee, W.E., 2013. "Toward renewable energy geo-information infrastructures: Applications of GIScience and remote sensing that build institutional capacity," Renewable and Sustainable Energy Reviews, Elsevier, vol. 18(C), pages 416-429.
    17. Scarlat, Nicolae & Dallemand, Jean-François & Fahl, Fernando, 2018. "Biogas: Developments and perspectives in Europe," Renewable Energy, Elsevier, vol. 129(PA), pages 457-472.
    18. Paria Sefeedpari & Rafał Pudełko & Anna Jędrejek & Małgorzata Kozak & Magdalena Borzęcka, 2020. "To What Extent Is Manure Produced, Distributed, and Potentially Available for Bioenergy? A Step toward Stimulating Circular Bio-Economy in Poland," Energies, MDPI, vol. 13(23), pages 1-22, November.
    19. Tomaž Levstek & Črtomir Rozman, 2022. "A Model for Finding a Suitable Location for a Micro Biogas Plant Using Gis Tools," Energies, MDPI, vol. 15(20), pages 1-21, October.
    20. Zubaryeva, Alyona & Zaccarelli, Nicola & Del Giudice, Cecilia & Zurlini, Giovanni, 2012. "Spatially explicit assessment of local biomass availability for distributed biogas production via anaerobic co-digestion – Mediterranean case study," Renewable Energy, Elsevier, vol. 39(1), pages 261-270.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:ags:ifaamr:188711. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: AgEcon Search (email available below). General contact details of provider: https://edirc.repec.org/data/ifamaea.html .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.