IDEAS home Printed from https://ideas.repec.org/a/ags/aerrae/97154.html
   My bibliography  Save this article

Impact of Drip Irrigation on Farming System: Evidence from Southern India

Author

Listed:
  • Kumar, D. Suresh
  • Palanisami, Kuppannan

Abstract

The micro irrigation in general and drip irrigation in particular has received considerable attention from policy makers, researchers, economists etc. for its perceived ability to contribute significantly to groundwater resources development, agricultural productivity, economic growth, and environmental sustainability. In this paper, the impact of drip irrigation has been studied on farming system in terms of cropping pattern, resources use and yield. The drip method of irrigation has been found to have a significant impact on resources saving, cost of cultivation, yield of crops and farm profitability. Hence, the policy should be focused on promotion of drip irrigation in those regions where scarcity of water and labour is alarming and where shift towards wider-spaced crops is taking place.

Suggested Citation

  • Kumar, D. Suresh & Palanisami, Kuppannan, 2010. "Impact of Drip Irrigation on Farming System: Evidence from Southern India," Agricultural Economics Research Review, Agricultural Economics Research Association (India), vol. 23(2), July.
  • Handle: RePEc:ags:aerrae:97154
    DOI: 10.22004/ag.econ.97154
    as

    Download full text from publisher

    File URL: https://ageconsearch.umn.edu/record/97154/files/7-D-Suresh.pdf
    Download Restriction: no

    File URL: https://libkey.io/10.22004/ag.econ.97154?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    References listed on IDEAS

    as
    1. Namara, Regassa E. & Upadhyay, Bhawana & Nagar, Rashmi K., 2005. "Adoption and impacts of microirrigation technologies: Empirical results from selected localities of Maharashtra and Gujarat states of India," IWMI Research Reports 44543, International Water Management Institute.
    2. Seckler, David & Amarasinghe, Upali A. & Molden, David J. & de Silva, Radhika & Barker, Randolph, 1998. "World water demand and supply, 1990 to 2025: scenarios and issues," IWMI Research Reports 61108, International Water Management Institute.
    3. Namara, Regassa & Upadhyay, Bhawana & Nagar, R. K., 2005. "Adoption and impacts of microirrigation technologies: empirical results from selected localities of Maharashtra and Gujarat states of India," IWMI Research Reports H037307, International Water Management Institute.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Fishman, Ram & Giné, Xavier & Jacoby, Hanan G., 2023. "Efficient irrigation and water conservation: Evidence from South India," Journal of Development Economics, Elsevier, vol. 162(C).
    2. Rahmani, Javad & Danesh-Yazdi, Mohammad, 2022. "Quantifying the impacts of agricultural alteration and climate change on the water cycle dynamics in a headwater catchment of Lake Urmia Basin," Agricultural Water Management, Elsevier, vol. 270(C).
    3. Birthal, Pratap S., 2013. "Application of Frontier Technologies for Agricultural Development," Indian Journal of Agricultural Economics, Indian Society of Agricultural Economics, vol. 68(1), pages 1-19.
    4. Raju Rai & Yili Zhang & Basanta Paudel & Narendra Raj Khanal, 2019. "Status of Farmland Abandonment and Its Determinants in the Transboundary Gandaki River Basin," Sustainability, MDPI, vol. 11(19), pages 1-18, September.
    5. Joshi, Pramod K. & Aggarwal, P.K. & Tyagi, N.K. & Pandey, Divya, 2015. "Role of development policies in combating climate change issues in Indian Agriculture: A frist order assessment of irrigation and fertilizer policies," 2015 Conference, August 9-14, 2015, Milan, Italy 211817, International Association of Agricultural Economists.
    6. Rakeshkumar Mahto & Deepak Sharma & Reshma John & Chandrasekhar Putcha, 2021. "Agrivoltaics: A Climate-Smart Agriculture Approach for Indian Farmers," Land, MDPI, vol. 10(11), pages 1-28, November.
    7. Prabhat Kishore & Pratap S. Birthal, 2024. "The impact of direct benefit transfers for micro-irrigation on farm performance: Evidence from India," Environment, Development and Sustainability: A Multidisciplinary Approach to the Theory and Practice of Sustainable Development, Springer, vol. 26(7), pages 17995-18015, July.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Narayanamoorthy, A & Bhattarai, M & Jothi, P, 2018. "An assessment of the economic impact of drip irrigation in vegetable production in India," Agricultural Economics Research Review, Agricultural Economics Research Association (India), vol. 31(1).
    2. Suresh Kumar, D., 2008. "Promoting drip irrigation where and why?," Conference Papers h042349, International Water Management Institute.
    3. Giordano, Meredith & Turral, H. & Scheierling, S. M. & Treguer, D. O. & McCornick, Peter G, 2017. "Beyond “More Crop per Drop”: evolving thinking on agricultural water productivity," IWMI Research Reports 257962, International Water Management Institute.
    4. Nelson Mango & Clifton Makate & Lulseged Tamene & Powell Mponela & Gift Ndengu, 2018. "Adoption of Small-Scale Irrigation Farming as a Climate-Smart Agriculture Practice and Its Influence on Household Income in the Chinyanja Triangle, Southern Africa," Land, MDPI, vol. 7(2), pages 1-19, April.
    5. Castillo, G. E. & Namara, Regassa & Ravnborg, H. M. & Hanjra, M. A. & Smith, L. & Hussein, M. H. & Bene, Christopher & Cook, S. & Hirsch, D. & Polak, P. & Valee, Domitille & van Koppen, Barbara, 2007. "Reversing the flow: agricultural water management pathways for poverty reduction," Book Chapters,, International Water Management Institute.
    6. Fitsum Assefa Adela & Joachim Aurbacher & Gumataw Kifle Abebe, 2019. "Small-scale irrigation scheme governance - poverty nexus: evidence from Ethiopia," Food Security: The Science, Sociology and Economics of Food Production and Access to Food, Springer;The International Society for Plant Pathology, vol. 11(4), pages 897-913, August.
    7. Kexiao Xie & Yuerui Zhu & Yongqiang Ma & Youcheng Chen & Shuiji Chen & Zhidan Chen, 2022. "Willingness of Tea Farmers to Adopt Ecological Agriculture Techniques Based on the UTAUT Extended Model," IJERPH, MDPI, vol. 19(22), pages 1-14, November.
    8. Maria Sabbagh & Luciano Gutierrez, 2022. "Micro-Irrigation Technology Adoption in the Bekaa Valley of Lebanon: A Behavioural Model," Sustainability, MDPI, vol. 14(13), pages 1-19, June.
    9. A. Narayanamoorthy & N. Devika & M. Bhattarai, 2016. "More Crop and Profit per Drop of Water: Drip Irrigation for Empowering Distressed Small Farmers," IIM Kozhikode Society & Management Review, , vol. 5(1), pages 83-90, January.
    10. Birthal, Pratap S., 2013. "Application of Frontier Technologies for Agricultural Development," Indian Journal of Agricultural Economics, Indian Society of Agricultural Economics, vol. 68(1), pages 1-19.
    11. Kumar, D. Suresh, 2012. "Adoption of Drip Irrigation System in India: Some Experience and Evidence," Bangladesh Development Studies, Bangladesh Institute of Development Studies (BIDS), vol. 35(1), pages 61-78, March.
    12. Burney, Jennifer A. & Naylor, Rosamond L., 2012. "Smallholder Irrigation as a Poverty Alleviation Tool in Sub-Saharan Africa," World Development, Elsevier, vol. 40(1), pages 110-123.
    13. Richard Ackermann, 2012. "New Directions for Water Management in Indian Agriculture," Global Journal of Emerging Market Economies, Emerging Markets Forum, vol. 4(2), pages 227-288, May.
    14. Domènech, Laia, 2015. "Is reliable water access the solution to undernutrition? A review of the potential of irrigation to solve nutrition and gender gaps in Africa South of the Sahara:," IFPRI discussion papers 1428, International Food Policy Research Institute (IFPRI).
    15. Nassima Amiri & Rachid Lahlali & Said Amiri & Moussa EL Jarroudi & Mohammed Yacoubi Khebiza & Mohammed Messouli, 2021. "Development of an Integrated Model to Assess the Impact of Agricultural Practices and Land Use on Agricultural Production in Morocco under Climate Stress over the Next Twenty Years," Sustainability, MDPI, vol. 13(21), pages 1-23, October.
    16. Juliet Angom & P. K. Viswanathan, 2023. "Irrigation Technology Interventions as Potential Options to Improve Water Security in India and Africa: A Comparative Review," Sustainability, MDPI, vol. 15(23), pages 1-17, November.
    17. Amarasinghe, Upali & Shah, Tushaar & Turral, Hugh & Anand, B. K., 2007. "India’s water future to 2025-2050: Business-as-usual scenario and deviations," IWMI Research Reports H040852, International Water Management Institute.
    18. Bennett, J., 2003. "Opportunities for increasing water productivity of CGIAR crops through plant breeding and molecular biology," IWMI Books, Reports H032638, International Water Management Institute.
    19. Han-Shen Chen, 2015. "Using Water Footprints for Examining the Sustainable Development of Science Parks," Sustainability, MDPI, vol. 7(5), pages 1-21, May.
    20. Giulio Sperandio & Mauro Pagano & Andrea Acampora & Vincenzo Civitarese & Carla Cedrola & Paolo Mattei & Roberto Tomasone, 2022. "Deficit Irrigation for Efficiency and Water Saving in Poplar Plantations," Sustainability, MDPI, vol. 14(21), pages 1-16, October.

    More about this item

    Keywords

    Agricultural and Food Policy;

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:ags:aerrae:97154. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: AgEcon Search (email available below). General contact details of provider: https://edirc.repec.org/data/aeraiea.html .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.