IDEAS home Printed from https://ideas.repec.org/a/aes/jsesro/v2y2013i2p1-6.html
   My bibliography  Save this article

Tl/Euro And Leu/Euro Exchange Rates Forecasting With Artificial Neural Network

Author

Listed:
  • Cagdas Hakan ALADAG

    (Hacettepe University, Faculty of Science, Department of Statistics, Beytepe, 06800, Ankara,Turkey)

  • Miruna MAZURENCU MARINESCU

    (The Bucharest University of Economic Studies, Department of Statistics and Econometrics, Bucharest, Romania)

Abstract

Forecasting is a popular research topic that is getting more and more attention from researchers and practitioners in various fields. It is a wellknown fact thatexchange rate forecasting is an important and challenging task for both academic researchers and business practitioners. Therefore, various approaches have been suggested in the literature for exchange rate forecasting. The forecasting techniques range from Box-Jenkins models to artificial networks. Artificial neural networks have also been successfully applied to various time series forecasting problems since they can model both linear and non-linear parts of time series. In addition, artificial neural networks method does not require assumptions such as those of other commonly used conventional methods. In this study, artificial neural networks are utilized to forecast TL/EUR and LEU/EUR exchange rates. In order to reach high forecasting accuracy level, different artificial neural networks models are examined and the obtained best results are compared to those produced by Box-Jenkins models

Suggested Citation

  • Cagdas Hakan ALADAG & Miruna MAZURENCU MARINESCU, 2013. "Tl/Euro And Leu/Euro Exchange Rates Forecasting With Artificial Neural Network," Journal of Social and Economic Statistics, Bucharest University of Economic Studies, vol. 2(2), pages 1-6, DECEMBER.
  • Handle: RePEc:aes:jsesro:v:2:y:2013:i:2:p:1-6
    as

    Download full text from publisher

    File URL: http://jses.ase.ro/downloads/Vol2NO2/2013marinescu.pdf
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Cem Kadilar & Muammer Simsek & Cagdas Hakan Aladag, 2009. "Forecasting The Exchange Rate Series With Ann: The Case Of Turkey," Istanbul University Econometrics and Statistics e-Journal, Department of Econometrics, Faculty of Economics, Istanbul University, vol. 9(1), pages 17-29, May.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Jying-Nan Wang & Jiangze Du & Chonghui Jiang & Kin-Keung Lai, 2019. "Chinese Currency Exchange Rates Forecasting with EMD-Based Neural Network," Complexity, Hindawi, vol. 2019, pages 1-15, October.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Chen Jo-Hui & Diaz John Francis T., 2021. "Application of grey relational analysis and artificial neural networks on currency exchange-traded notes (ETNs)," Studies in Nonlinear Dynamics & Econometrics, De Gruyter, vol. 25(2), pages 1-17, April.
    2. CIOBANU Dumitru & BAR Mary Violeta, 2013. "On The Prediction Of Exchange Rate Dollar/Euro With An Svm Model," Revista Economica, Lucian Blaga University of Sibiu, Faculty of Economic Sciences, vol. 65(2), pages 91-109.
    3. Cenk Ufuk Yıldıran & Abdurrahman Fettahoğlu, 2017. "Forecasting USDTRY rate by ARIMA method," Cogent Economics & Finance, Taylor & Francis Journals, vol. 5(1), pages 1335968-133, January.
    4. Yasemin Deniz Akarım, 2013. "A Comparison of Linear and Nonlinear Models in Forecasting Market Risk: The Evidence from Turkish Derivative Exchange," Journal of Economics and Behavioral Studies, AMH International, vol. 5(3), pages 164-172.
    5. Hatice Erkekoglu & Aweng Peter Majok Garang & Adire Simon Deng, 2020. "Comparative Evaluation of Forecast Accuracies for ARIMA, Exponential Smoothing and VAR," International Journal of Economics and Financial Issues, Econjournals, vol. 10(6), pages 206-216.
    6. Ganbold, Batzorig & Akram, Iqra & Fahrozi Lubis, Raisal, 2017. "Exchange rate volatility: A forecasting approach of using the ARCH family along with ARIMA SARIMA and semi-structural-SVAR in Turkey," MPRA Paper 84447, University Library of Munich, Germany, revised 2017.

    More about this item

    Keywords

    Artificial neural networks; Box-Jenkins models; Exchange rates; Forecasting; Time series.;
    All these keywords.

    JEL classification:

    • C45 - Mathematical and Quantitative Methods - - Econometric and Statistical Methods: Special Topics - - - Neural Networks and Related Topics
    • C51 - Mathematical and Quantitative Methods - - Econometric Modeling - - - Model Construction and Estimation
    • C53 - Mathematical and Quantitative Methods - - Econometric Modeling - - - Forecasting and Prediction Models; Simulation Methods
    • F37 - International Economics - - International Finance - - - International Finance Forecasting and Simulation: Models and Applications

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:aes:jsesro:v:2:y:2013:i:2:p:1-6. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Bogdan-Vasile Ileanu (email available below). General contact details of provider: https://edirc.repec.org/data/aseeero.html .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.