IDEAS home Printed from https://ideas.repec.org/a/aes/amfeco/v26y2024i67p741.html
   My bibliography  Save this article

Insights on the Relationship between Artificial Intelligence Skills and National Culture

Author

Listed:
  • Irina-Eugenia Iamandi

    (Bucharest University of Economic Studies, Romania)

  • Laura-Gabriela Constantin

    (Bucharest University of Economic Studies, Romania)

  • Sebastian Madalin Munteanu

    (Bucharest University of Economic Studies, Romania)

  • Bogdan Cernat-Gruici

    (Bucharest University of Economic Studies, Romania)

Abstract

In order to fully benefit from the advantages induced by artificial intelligence (AI) at the corporate level, business organisations should be well aware of the factors contributing to the proper AI specialisation of their employees. In this context, the present paper aims to examine the role of national culture in supporting the distribution of AI skills and jobs across countries, starting from the theoretical and applied need of carrying out such a study. The investigation is developed by using Hofstede s model of the six dimensions of national culture and it focusses on a global sample of 44 leading countries regarding their AI talent concentration. For the fulfilment of the assumed objective, multiple linear regression models, accompanied by robust regression and enhanced by beta regression with novel robust estimators, were employed. The achieved results reflect the existence of a connection between national culture and AI skills development across the explored countries. More specifically, the outcomes exhibit the prevalence of a negative, statistically significant, relationship between individualism and AI talent concentration, and a positive, significant connection between long-term orientation and AI skills and jobs concentration. The results are relevant for organisations and managers aiming to support the development of AI skills of their employees by nurturing free communication, group collaboration, teamwork, peer learning, and forward-looking strategic education programmes for adjustment to AI.

Suggested Citation

  • Irina-Eugenia Iamandi & Laura-Gabriela Constantin & Sebastian Madalin Munteanu & Bogdan Cernat-Gruici, 2024. "Insights on the Relationship between Artificial Intelligence Skills and National Culture," The AMFITEATRU ECONOMIC journal, Academy of Economic Studies - Bucharest, Romania, vol. 26(67), pages 741-741, August.
  • Handle: RePEc:aes:amfeco:v:26:y:2024:i:67:p:741
    as

    Download full text from publisher

    File URL: http://www.amfiteatrueconomic.ro/temp/Article_3334.pdf
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Cribari-Neto, Francisco & Zeileis, Achim, 2010. "Beta Regression in R," Journal of Statistical Software, Foundation for Open Access Statistics, vol. 34(i02).
    2. Erumban, Abdul Azeez & de Jong, Simon B., 2006. "Cross-country differences in ICT adoption: A consequence of Culture?," Journal of World Business, Elsevier, vol. 41(4), pages 302-314, December.
    3. Grün, Bettina & Kosmidis, Ioannis & Zeileis, Achim, 2012. "Extended Beta Regression in R: Shaken, Stirred, Mixed, and Partitioned," Journal of Statistical Software, Foundation for Open Access Statistics, vol. 48(i11).
    4. Vitolla, Filippo & Raimo, Nicola & Rubino, Michele & Garegnani, Giovanni Maria, 2021. "Do cultural differences impact ethical issues? Exploring the relationship between national culture and quality of code of ethics," Journal of International Management, Elsevier, vol. 27(1).
    5. Silvia Ferrari & Francisco Cribari-Neto, 2004. "Beta Regression for Modelling Rates and Proportions," Journal of Applied Statistics, Taylor & Francis Journals, vol. 31(7), pages 799-815.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Chen, Kee Kuo & Chiu, Rong-Her & Chang, Ching-Ter, 2017. "Using beta regression to explore the relationship between service attributes and likelihood of customer retention for the container shipping industry," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 104(C), pages 1-16.
    2. Tariq Maqsood & Mark Edwards & Ioanna Ioannou & Ioannis Kosmidis & Tiziana Rossetto & Neil Corby, 2016. "Seismic vulnerability functions for Australian buildings by using GEM empirical vulnerability assessment guidelines," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 80(3), pages 1625-1650, February.
    3. Tariq Maqsood & Mark Edwards & Ioanna Ioannou & Ioannis Kosmidis & Tiziana Rossetto & Neil Corby, 2016. "Seismic vulnerability functions for Australian buildings by using GEM empirical vulnerability assessment guidelines," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 80(3), pages 1625-1650, February.
    4. Zhou, Haiming & Huang, Xianzheng, 2022. "Bayesian beta regression for bounded responses with unknown supports," Computational Statistics & Data Analysis, Elsevier, vol. 167(C).
    5. Hui Ye & Anthony Bellotti, 2019. "Modelling Recovery Rates for Non-Performing Loans," Risks, MDPI, vol. 7(1), pages 1-17, February.
    6. Pablo Mitnik & Sunyoung Baek, 2013. "The Kumaraswamy distribution: median-dispersion re-parameterizations for regression modeling and simulation-based estimation," Statistical Papers, Springer, vol. 54(1), pages 177-192, February.
    7. Kathryn M. Irvine & T. J. Rodhouse & Ilai N. Keren, 2016. "Extending Ordinal Regression with a Latent Zero-Augmented Beta Distribution," Journal of Agricultural, Biological and Environmental Statistics, Springer;The International Biometric Society;American Statistical Association, vol. 21(4), pages 619-640, December.
    8. Johnson, Caroline A. & Flage, Roger & Guikema, Seth D., 2019. "Characterising the robustness of coupled power-law networks," Reliability Engineering and System Safety, Elsevier, vol. 191(C).
    9. Antonio Calcagnì & Luigi Lombardi, 2022. "Modeling random and non-random decision uncertainty in ratings data: a fuzzy beta model," AStA Advances in Statistical Analysis, Springer;German Statistical Society, vol. 106(1), pages 145-173, March.
    10. Artur J. Lemonte & Germán Moreno-Arenas, 2020. "On a heavy-tailed parametric quantile regression model for limited range response variables," Computational Statistics, Springer, vol. 35(1), pages 379-398, March.
    11. Paulus, Anne & Hagemann, Nina & Baaken, Marieke C. & Roilo, Stephanie & Alarcón-Segura, Viviana & Cord, Anna F. & Beckmann, Michael, 2022. "Landscape context and farm characteristics are key to farmers' adoption of agri-environmental schemes," Land Use Policy, Elsevier, vol. 121(C).
    12. Edouard Civel & Nathaly Cruz-Garcia, 2018. "Green, yellow or red lemons? Framed field experiment on houses energy labels perception," Working Papers hal-04141696, HAL.
    13. Souza, Tatiene C. & Cribari–Neto, Francisco, 2018. "Intelligence and religious disbelief in the United States," Intelligence, Elsevier, vol. 68(C), pages 48-57.
    14. Barbiero, Tommaso & Grillenzoni, Carlo, 2019. "A statistical analysis of the energy effectiveness of building refurbishment," Renewable and Sustainable Energy Reviews, Elsevier, vol. 114(C), pages 1-1.
    15. Barry Eichengreen & Michael R. Haines & Matthew S. Jaremski & David Leblang, 2017. "Populists at the Polls: Economic Factors in the 1896 Presidential Election," NBER Working Papers 23932, National Bureau of Economic Research, Inc.
    16. Tien D. N. Ho & John K. M. Kuwornu & Takuji W. Tsusaka, 2022. "Factors Influencing Smallholder Rice Farmers’ Vulnerability to Climate Change and Variability in the Mekong Delta Region of Vietnam," The European Journal of Development Research, Palgrave Macmillan;European Association of Development Research and Training Institutes (EADI), vol. 34(1), pages 272-302, February.
    17. Ameztegui, Aitor & Coll, Lluís & Messier, Christian, 2015. "Modelling the effect of climate-induced changes in recruitment and juvenile growth on mixed-forest dynamics: The case of montane–subalpine Pyrenean ecotones," Ecological Modelling, Elsevier, vol. 313(C), pages 84-93.
    18. Francesca Gastaldi & EugenioPalmieri & Maria Grazia Pazienza & Fiorenza Venturini, 2021. "Mitigare i divari regionali negli investimenti: un?analisi del credito di imposta per il Mezzogiorno," PRISMA Economia - Societ? - Lavoro, FrancoAngeli Editore, vol. 2021(1-2), pages 38-63.
    19. Emilio Gómez-Déniz & Jorge V Pérez-Rodríguez & José Boza-Chirino, 2020. "Modelling tourist expenditure at origin and destination," Tourism Economics, , vol. 26(3), pages 437-460, May.
    20. Grün, Bettina & Kosmidis, Ioannis & Zeileis, Achim, 2012. "Extended Beta Regression in R: Shaken, Stirred, Mixed, and Partitioned," Journal of Statistical Software, Foundation for Open Access Statistics, vol. 48(i11).

    More about this item

    Keywords

    artificial intelligence (AI); AI skills; national culture; Hofstede; organisational competitiveness; OLS multiple regression; robust regression models;
    All these keywords.

    JEL classification:

    • J24 - Labor and Demographic Economics - - Demand and Supply of Labor - - - Human Capital; Skills; Occupational Choice; Labor Productivity
    • M50 - Business Administration and Business Economics; Marketing; Accounting; Personnel Economics - - Personnel Economics - - - General
    • M10 - Business Administration and Business Economics; Marketing; Accounting; Personnel Economics - - Business Administration - - - General
    • O33 - Economic Development, Innovation, Technological Change, and Growth - - Innovation; Research and Development; Technological Change; Intellectual Property Rights - - - Technological Change: Choices and Consequences; Diffusion Processes

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:aes:amfeco:v:26:y:2024:i:67:p:741. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Valentin Dumitru (email available below). General contact details of provider: https://edirc.repec.org/data/aseeero.html .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.