IDEAS home Printed from https://ideas.repec.org/a/aea/jeclit/v59y2021i4p1135-90.html
   My bibliography  Save this article

Forecasting in the Presence of Instabilities: How We Know Whether Models Predict Well and How to Improve Them

Author

Listed:
  • Barbara Rossi

Abstract

This article provides guidance on how to evaluate and improve the forecasting ability of models in the presence of instabilities, which are widespread in economic time series. Empirically relevant examples include predicting the financial crisis of 2007–08, as well as, more broadly, fluctuations in asset prices, exchange rates, output growth, and inflation. In the context of unstable environments, I discuss how to assess models' forecasting ability; how to robustify models' estimation; and how to correctly report measures of forecast uncertainty. Importantly, and perhaps surprisingly, breaks in models' parameters are neither necessary nor sufficient to generate time variation in models' forecasting performance: thus, one should not test for breaks in models' parameters, but rather evaluate their forecasting ability in a robust way. In addition, local measures of models' forecasting performance are more appropriate than traditional, average measures.

Suggested Citation

  • Barbara Rossi, 2021. "Forecasting in the Presence of Instabilities: How We Know Whether Models Predict Well and How to Improve Them," Journal of Economic Literature, American Economic Association, vol. 59(4), pages 1135-1190, December.
  • Handle: RePEc:aea:jeclit:v:59:y:2021:i:4:p:1135-90
    DOI: 10.1257/jel.20201479
    as

    Download full text from publisher

    File URL: https://www.aeaweb.org/doi/10.1257/jel.20201479
    Download Restriction: no

    File URL: https://doi.org/10.3886/E147225V1
    Download Restriction: no

    File URL: https://www.aeaweb.org/doi/10.1257/jel.20201479.ds
    Download Restriction: Access to full text is restricted to AEA members and institutional subscribers.

    File URL: https://libkey.io/10.1257/jel.20201479?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Moramarco, Graziano, 2024. "Financial-cycle ratios and medium-term predictions of GDP: Evidence from the United States," International Journal of Forecasting, Elsevier, vol. 40(2), pages 777-795.
    2. Carola Conces Binder & Rodrigo Sekkel, 2024. "Central bank forecasting: A survey," Journal of Economic Surveys, Wiley Blackwell, vol. 38(2), pages 342-364, April.
    3. Friedrich, Marina & Lin, Yicong, 2024. "Sieve bootstrap inference for linear time-varying coefficient models," Journal of Econometrics, Elsevier, vol. 239(1).
    4. Nicolás Magner & Nicolás Hardy, 2022. "Cryptocurrency Forecasting: More Evidence of the Meese-Rogoff Puzzle," Mathematics, MDPI, vol. 10(13), pages 1-27, July.
    5. James Mitchell & Aubrey Poon & Dan Zhu, 2024. "Constructing density forecasts from quantile regressions: Multimodality in macrofinancial dynamics," Journal of Applied Econometrics, John Wiley & Sons, Ltd., vol. 39(5), pages 790-812, August.
    6. Thompson, Ryan & Qian, Yilin & Vasnev, Andrey L., 2024. "Flexible global forecast combinations," Omega, Elsevier, vol. 126(C).
    7. Tony Chernis & Niko Hauzenberger & Florian Huber & Gary Koop & James Mitchell, 2023. "Predictive Density Combination Using a Tree-Based Synthesis Function," Staff Working Papers 23-61, Bank of Canada.
    8. Andrea Bastianin & Elisabetta Mirto & Yan Qin & Luca Rossini, 2024. "What drives the European carbon market? Macroeconomic factors and forecasts," Papers 2402.04828, arXiv.org, revised Feb 2024.
    9. Li, Dongxin & Zhang, Li & Li, Lihong, 2023. "Forecasting stock volatility with economic policy uncertainty: A smooth transition GARCH-MIDAS model," International Review of Financial Analysis, Elsevier, vol. 88(C).
    10. Wang, Xiaoqian & Hyndman, Rob J. & Li, Feng & Kang, Yanfei, 2023. "Forecast combinations: An over 50-year review," International Journal of Forecasting, Elsevier, vol. 39(4), pages 1518-1547.
    11. Konstantin Boss & Andre Groeger & Tobias Heidland & Finja Krueger & Conghan Zheng, 2023. "Forecasting Bilateral Refugee Flows with High-dimensional Data and Machine Learning Techniques," Working Papers 1387, Barcelona School of Economics.
    12. Bennett, Donyetta & Mekelburg, Erik & Strauss, Jack & Williams, T.H., 2024. "Unlocking the black box of sentiment and cryptocurrency: What, which, why, when and how?," Global Finance Journal, Elsevier, vol. 60(C).
    13. Yu Jeffrey Hu & Jeroen Rombouts & Ines Wilms, 2023. "Fast Forecasting of Unstable Data Streams for On-Demand Service Platforms," Papers 2303.01887, arXiv.org, revised May 2024.
    14. Fabrizio Iacone & Luca Rossini & Andrea Viselli, 2024. "Comparing predictive ability in presence of instability over a very short time," Papers 2405.11954, arXiv.org.
    15. Eric Hillebrand & Jakob Guldbæk Mikkelsen & Lars Spreng & Giovanni Urga, 2023. "Exchange rates and macroeconomic fundamentals: Evidence of instabilities from time‐varying factor loadings," Journal of Applied Econometrics, John Wiley & Sons, Ltd., vol. 38(6), pages 857-877, September.
    16. Yolanda S. Stander, 2024. "A News Sentiment Index to Inform International Financial Reporting Standard 9 Impairments," JRFM, MDPI, vol. 17(7), pages 1-23, July.
    17. Stylianos Asimakopoulos & Marco Lorusso & Francesco Ravazzolo, 2023. "A Bayesian DSGE Approach to Modelling Cryptocurrency," Working Papers No 09/2023, Centre for Applied Macro- and Petroleum economics (CAMP), BI Norwegian Business School.
    18. Ray C. Fair, 2022. "A note on the fed’s power to lower inflation," Business Economics, Palgrave Macmillan;National Association for Business Economics, vol. 57(2), pages 56-63, April.

    More about this item

    JEL classification:

    • C51 - Mathematical and Quantitative Methods - - Econometric Modeling - - - Model Construction and Estimation
    • C53 - Mathematical and Quantitative Methods - - Econometric Modeling - - - Forecasting and Prediction Models; Simulation Methods
    • E31 - Macroeconomics and Monetary Economics - - Prices, Business Fluctuations, and Cycles - - - Price Level; Inflation; Deflation
    • E32 - Macroeconomics and Monetary Economics - - Prices, Business Fluctuations, and Cycles - - - Business Fluctuations; Cycles
    • E37 - Macroeconomics and Monetary Economics - - Prices, Business Fluctuations, and Cycles - - - Forecasting and Simulation: Models and Applications
    • F37 - International Economics - - International Finance - - - International Finance Forecasting and Simulation: Models and Applications

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:aea:jeclit:v:59:y:2021:i:4:p:1135-90. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Michael P. Albert (email available below). General contact details of provider: https://edirc.repec.org/data/aeaaaea.html .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.