IDEAS home Printed from https://ideas.repec.org/a/aea/aecrev/v111y2021i11p3540-74.html
   My bibliography  Save this article

Naïve Learning with Uninformed Agents

Author

Listed:
  • Abhijit Banerjee
  • Emily Breza
  • Arun G. Chandrasekhar
  • Markus Mobius

Abstract

The DeGroot model has emerged as a credible alternative to the standard Bayesian model for studying learning on networks, offering a natural way to model naïve learning in a complex setting. One unattractive aspect of this model is the assumption that the process starts with every node in the network having a signal. We study a natural extension of the DeGroot model that can deal with sparse initial signals. We show that an agent's social influence in this generalized DeGroot model is essentially proportional to the degree-weighted share of uninformed nodes who will hear about an event for the first time via this agent. This characterization result then allows us to relate network geometry to information aggregation. We show information aggregation preserves "wisdom" in the sense that initial signals are weighed approximately equally in a model of network formation that captures the sparsity, clustering, and small-world properties of real-world networks. We also identify an example of a network structure where essentially only the signal of a single agent is aggregated, which helps us pinpoint a condition on the network structure necessary for almost full aggregation. Simulating the modeled learning process on a set of real-world networks, we find that there is on average 22.4 percent information loss in these networks. We also explore how correlation in the location of seeds can exacerbate aggregation failure. Simulations with real-world network data show that with clustered seeding, information loss climbs to 34.4 percent.

Suggested Citation

  • Abhijit Banerjee & Emily Breza & Arun G. Chandrasekhar & Markus Mobius, 2021. "Naïve Learning with Uninformed Agents," American Economic Review, American Economic Association, vol. 111(11), pages 3540-3574, November.
  • Handle: RePEc:aea:aecrev:v:111:y:2021:i:11:p:3540-74
    DOI: 10.1257/aer.20181151
    as

    Download full text from publisher

    File URL: https://www.aeaweb.org/doi/10.1257/aer.20181151
    Download Restriction: no

    File URL: https://doi.org/10.3886/E144181V1
    Download Restriction: no

    File URL: https://www.aeaweb.org/doi/10.1257/aer.20181151.ds
    Download Restriction: Access to full text is restricted to AEA members and institutional subscribers.

    File URL: https://libkey.io/10.1257/aer.20181151?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    Other versions of this item:

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Abhijit Banerjee & Olivier Compte, 2024. "Consensus and Disagreement: Information Aggregation under (Not So) Naive Learning," Journal of Political Economy, University of Chicago Press, vol. 132(8), pages 2790-2829.
    2. Buechel, Berno & Klößner, Stefan & Meng, Fanyuan & Nassar, Anis, 2023. "Misinformation due to asymmetric information sharing," Journal of Economic Dynamics and Control, Elsevier, vol. 150(C).
    3. Marcel Fafchamps & Måns Söderbom & Monique van den Boogart, 2022. "Adoption with Social Learning and Network Externalities," Oxford Bulletin of Economics and Statistics, Department of Economics, University of Oxford, vol. 84(6), pages 1259-1282, December.
    4. Simone Cerreia-Vioglio & Roberto Corrao & Giacomo Lanzani, 2020. "Robust Opinion Aggregation and its Dynamics," Working Papers 662, IGIER (Innocenzo Gasparini Institute for Economic Research), Bocconi University.
    5. Abate, Gashaw T. & Bernard, Tanguy & Makhija, Simrin & Spielman, David J., 2023. "Accelerating technical change through ICT: Evidence from a video-mediated extension experiment in Ethiopia," World Development, Elsevier, vol. 161(C).
    6. Christopher B. Barrett & Asad Islam & Abdul Mohammad Malek & Debayan Pakrashi & Ummul Ruthbah, 2022. "Experimental Evidence on Adoption and Impact of the System of Rice Intensification," American Journal of Agricultural Economics, John Wiley & Sons, vol. 104(1), pages 4-32, January.
    7. Ionel Popescu & Tushar Vaidya, 2019. "Averaging plus Learning Models and Their Asymptotics," Papers 1904.08131, arXiv.org, revised Jul 2023.
    8. Rapanos, Theodoros, 2023. "What makes an opinion leader: Expertise vs popularity," Games and Economic Behavior, Elsevier, vol. 138(C), pages 355-372.
    9. Akylai Taalaibekova, 2018. "Opinion formation in social networks," Operations Research and Decisions, Wroclaw University of Science and Technology, Faculty of Management, vol. 28(2), pages 85-108.

    More about this item

    JEL classification:

    • D83 - Microeconomics - - Information, Knowledge, and Uncertainty - - - Search; Learning; Information and Knowledge; Communication; Belief; Unawareness
    • D85 - Microeconomics - - Information, Knowledge, and Uncertainty - - - Network Formation
    • Z13 - Other Special Topics - - Cultural Economics - - - Economic Sociology; Economic Anthropology; Language; Social and Economic Stratification

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:aea:aecrev:v:111:y:2021:i:11:p:3540-74. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Michael P. Albert (email available below). General contact details of provider: https://edirc.repec.org/data/aeaaaea.html .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.