IDEAS home Printed from https://ideas.repec.org/a/adr/anecst/y2019i134p43-77.html
   My bibliography  Save this article

Carbon Dioxide Emissions and Economic Activities: A Mean Field Variational Bayes Semiparametric Panel Data Model with Random Coefficients

Author

Listed:
  • Badi H. Baltagi
  • Georges Bresson
  • Jean-Michel Etienne

Abstract

This paper proposes semiparametric estimation of the relationship between CO2 emissions and economic activities for a panel of 81 countries observed over the period 1991-2015. The observed differentiated behaviors by country reveal strong heterogeneity as well as different trends across countries and years. This is the motivation behind using a mixed fixed- and random-coefficients panel data model to estimate this relationship. Following Lee and Wand (2016a), we apply a mean field variational Bayes approximation to estimate a log model with structural breaks between CO2 emissions per capita and GDP per capita including control covariates such as energy intensity and use, energy consumption, population density, urbanization and trade. Results reveal a strong "CO2 emissions - GDP elasticity", close to one, confirming the increasing but complex link between these two variables. The use of this methodology enriches the estimates of climate change models underlining a large diversity of responses across variables and countries.

Suggested Citation

  • Badi H. Baltagi & Georges Bresson & Jean-Michel Etienne, 2019. "Carbon Dioxide Emissions and Economic Activities: A Mean Field Variational Bayes Semiparametric Panel Data Model with Random Coefficients," Annals of Economics and Statistics, GENES, issue 134, pages 43-77.
  • Handle: RePEc:adr:anecst:y:2019:i:134:p:43-77
    DOI: 10.15609/annaeconstat2009.134.0043
    as

    Download full text from publisher

    File URL: https://www.jstor.org/stable/10.15609/annaeconstat2009.134.0043
    Download Restriction: no

    File URL: https://libkey.io/10.15609/annaeconstat2009.134.0043?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    Other versions of this item:

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Badi H. Baltagi & Georges Bresson & Anoop Chaturvedi & Guy Lacroix, 2022. "Robust Dynamic Space-Time Panel Data Models Using ε-contamination: An Application to Crop Yields and Climate Change," Center for Policy Research Working Papers 254, Center for Policy Research, Maxwell School, Syracuse University.
    2. Alina Wilke & Zhiwei Shen & Matthias Ritter, 2021. "How Much Can Small-Scale Wind Energy Production Contribute to Energy Supply in Cities? A Case Study of Berlin," Energies, MDPI, vol. 14(17), pages 1-20, September.
    3. Cho-Hoi Hui & Andrew Wong, 2021. "Do countries adjust the carbon intensity of energy towards targets? The role of financial development on the adjustment," SN Business & Economics, Springer, vol. 1(10), pages 1-30, October.

    More about this item

    Keywords

    Carbon Dioxide Emissions; Energy Intensity; Environmental Kuznets Curve; GDP; Greenhouse Gas Emissions; Mean Field Variational Bayes Approximation; Panel Data; Random Coefficients; Semiparametric Model;
    All these keywords.

    JEL classification:

    • C11 - Mathematical and Quantitative Methods - - Econometric and Statistical Methods and Methodology: General - - - Bayesian Analysis: General
    • C14 - Mathematical and Quantitative Methods - - Econometric and Statistical Methods and Methodology: General - - - Semiparametric and Nonparametric Methods: General
    • C23 - Mathematical and Quantitative Methods - - Single Equation Models; Single Variables - - - Models with Panel Data; Spatio-temporal Models
    • Q53 - Agricultural and Natural Resource Economics; Environmental and Ecological Economics - - Environmental Economics - - - Air Pollution; Water Pollution; Noise; Hazardous Waste; Solid Waste; Recycling
    • Q54 - Agricultural and Natural Resource Economics; Environmental and Ecological Economics - - Environmental Economics - - - Climate; Natural Disasters and their Management; Global Warming

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:adr:anecst:y:2019:i:134:p:43-77. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Secretariat General or Laurent Linnemer (email available below). General contact details of provider: https://edirc.repec.org/data/ensaefr.html .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.