IDEAS home Printed from https://ideas.repec.org/a/adm/journl/v8y2019i5p135-138.html
   My bibliography  Save this article

Nuclear Energy Spectrum Decomposition Based on Hybrid Particle Swarm Optimization

Author

Listed:
  • Xing-Ke Ma
  • Yang-Zhen Ji

Abstract

A nonlinear fitting model is proposed for the problem of nuclear energy spectrum decomposition. And the hybrid particle swarm optimization algorithm based on natural selection idea and random inertia weight is used to solve. First, a nonlinear fitting model was introduced. Secondly, the defects of the traditional particle swarm optimization algorithm based on linear inertia weight are analyzed, and the ideas of stochastic inertia weight and natural selection are integrated into the algorithm for these shortcomings. Then, according to the specific problems involved in this paper and the existing data, the continuous function model is transformed into a discrete series model. According to the nature that the absolute value is not less than zero, the fitness value is appropriately modified to achieve the purpose of improving the calculation accuracy and the operation speed of the algorithm.

Suggested Citation

  • Xing-Ke Ma & Yang-Zhen Ji, 2019. "Nuclear Energy Spectrum Decomposition Based on Hybrid Particle Swarm Optimization," International Journal of Sciences, Office ijSciences, vol. 8(05), pages 135-138, May.
  • Handle: RePEc:adm:journl:v:8:y:2019:i:5:p:135-138
    DOI: 10.18483/ijSci.2075
    as

    Download full text from publisher

    File URL: https://www.ijsciences.com/pub/article/2075
    Download Restriction: no

    File URL: https://www.ijsciences.com/pub/pdf/V82019052075.pdf
    Download Restriction: no

    File URL: https://libkey.io/10.18483/ijSci.2075?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    References listed on IDEAS

    as
    1. Liu, Bo & Wang, Ling & Jin, Yi-Hui & Tang, Fang & Huang, De-Xian, 2005. "Improved particle swarm optimization combined with chaos," Chaos, Solitons & Fractals, Elsevier, vol. 25(5), pages 1261-1271.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Alatas, Bilal & Akin, Erhan & Ozer, A. Bedri, 2009. "Chaos embedded particle swarm optimization algorithms," Chaos, Solitons & Fractals, Elsevier, vol. 40(4), pages 1715-1734.
    2. He, Yao-Yao & Zhou, Jian-Zhong & Xiang, Xiu-Qiao & Chen, Heng & Qin, Hui, 2009. "Comparison of different chaotic maps in particle swarm optimization algorithm for long-term cascaded hydroelectric system scheduling," Chaos, Solitons & Fractals, Elsevier, vol. 42(5), pages 3169-3176.
    3. Yang, Dixiong & Li, Gang & Cheng, Gengdong, 2007. "On the efficiency of chaos optimization algorithms for global optimization," Chaos, Solitons & Fractals, Elsevier, vol. 34(4), pages 1366-1375.
    4. dos Santos Coelho, Leandro & Coelho, Antonio Augusto Rodrigues, 2009. "Model-free adaptive control optimization using a chaotic particle swarm approach," Chaos, Solitons & Fractals, Elsevier, vol. 41(4), pages 2001-2009.
    5. Wang, Jianzhou & Qin, Shanshan & Jin, Shiqiang & Wu, Jie, 2015. "Estimation methods review and analysis of offshore extreme wind speeds and wind energy resources," Renewable and Sustainable Energy Reviews, Elsevier, vol. 42(C), pages 26-42.
    6. Lian, Zhigang & Gu, Xingsheng & Jiao, Bin, 2008. "A novel particle swarm optimization algorithm for permutation flow-shop scheduling to minimize makespan," Chaos, Solitons & Fractals, Elsevier, vol. 35(5), pages 851-861.
    7. El-Shorbagy, M.A. & Mousa, A.A. & Nasr, S.M., 2016. "A chaos-based evolutionary algorithm for general nonlinear programming problems," Chaos, Solitons & Fractals, Elsevier, vol. 85(C), pages 8-21.
    8. Sadeghian, Hamidreza & Wang, Zhifang, 2020. "A novel impact-assessment framework for distributed PV installations in low-voltage secondary networks," Renewable Energy, Elsevier, vol. 147(P1), pages 2179-2194.
    9. Liu, Bo & Wang, Ling & Jin, Yi-Hui & Huang, De-Xian & Tang, Fang, 2007. "Control and synchronization of chaotic systems by differential evolution algorithm," Chaos, Solitons & Fractals, Elsevier, vol. 34(2), pages 412-419.
    10. Anouar Farah & Akram Belazi & Khalid Alqunun & Abdulaziz Almalaq & Badr M. Alshammari & Mohamed Bechir Ben Hamida & Rabeh Abbassi, 2021. "A New Design Method for Optimal Parameters Setting of PSSs and SVC Damping Controllers to Alleviate Power System Stability Problem," Energies, MDPI, vol. 14(21), pages 1-26, November.
    11. Mohamad Javad Alizadeh & Davoud Ahmadyar & Ali Afghantoloee, 2017. "Improvement on the Existing Equations for Predicting Longitudinal Dispersion Coefficient," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 31(6), pages 1777-1794, April.
    12. Tatsumi, Keiji & Ibuki, Takeru & Tanino, Tetsuzo, 2015. "Particle swarm optimization with stochastic selection of perturbation-based chaotic updating system," Applied Mathematics and Computation, Elsevier, vol. 269(C), pages 904-929.
    13. Liu, Bo & Wang, Ling & Jin, Yi-Hui & Tang, Fang & Huang, De-Xian, 2006. "Directing orbits of chaotic systems by particle swarm optimization," Chaos, Solitons & Fractals, Elsevier, vol. 29(2), pages 454-461.
    14. Jinn-Tong Chiu & Ching-Hai Lin, 2016. "A Modified Particle Swarm Optimization Based on Eagle Foraging Behavior," International Journal of Information Technology & Decision Making (IJITDM), World Scientific Publishing Co. Pte. Ltd., vol. 15(03), pages 703-727, May.
    15. Borghi, Giacomo & Grassi, Sara & Pareschi, Lorenzo, 2023. "Consensus based optimization with memory effects: Random selection and applications," Chaos, Solitons & Fractals, Elsevier, vol. 174(C).
    16. Yılmaz Delice & Emel Kızılkaya Aydoğan & Uğur Özcan & Mehmet Sıtkı İlkay, 2017. "A modified particle swarm optimization algorithm to mixed-model two-sided assembly line balancing," Journal of Intelligent Manufacturing, Springer, vol. 28(1), pages 23-36, January.
    17. Arturo Valdivia-González & Daniel Zaldívar & Erik Cuevas & Marco Pérez-Cisneros & Fernando Fausto & Adrián González, 2017. "A Chaos-Embedded Gravitational Search Algorithm for the Identification of Electrical Parameters of Photovoltaic Cells," Energies, MDPI, vol. 10(7), pages 1-25, July.
    18. Hossein Lotfi, 2022. "A Multiobjective Evolutionary Approach for Solving the Multi-Area Dynamic Economic Emission Dispatch Problem Considering Reliability Concerns," Sustainability, MDPI, vol. 15(1), pages 1-23, December.
    19. Pan, Hui & Wang, Ling & Liu, Bo, 2008. "Chaotic annealing with hypothesis test for function optimization in noisy environments," Chaos, Solitons & Fractals, Elsevier, vol. 35(5), pages 888-894.
    20. Hong, Wei-Chiang, 2010. "Application of chaotic ant swarm optimization in electric load forecasting," Energy Policy, Elsevier, vol. 38(10), pages 5830-5839, October.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:adm:journl:v:8:y:2019:i:5:p:135-138. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Staff ijSciences (email available below). General contact details of provider: .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.