Author
Listed:
- K. A. Vilkova
- U. S. Zakharova
Abstract
Massification, digitalization and bureaucratization are now the major trends that shape higher education. Massification has led to an inevitable problem of the heterogeneity of students and the need for adaptive learning; digitalization has created a need for distance learning technologies and, as a result, learning data production; finally, bureaucratization has meant that the education quality assessment now predominantly relies on quantitative rather than qualitative indicators. At the crossing of these trends, a new research interest has emerged, which develops both theoretical and practically oriented studies and which has become known as learning analytics. Learning analytics is now actively discussed in Western countries, where national policies to regulate and stimulate this sphere are designed and professional associations of specialists in learning analytics are created. Proponents of learning analytics believe that the data collected and analyzed by an education institution will help the management take more justified and objective decisions than those based on expert opinions. Learning analytics is understood in this paper as a necessary tool for detecting the weak sides of the curricula. It also helps build students’ individual learning trajectories, which is essential for an individualized approach in education and for making the learning process more adaptive. Opponents of learning analytics, in their turn, see it as a threat to the current balance of power in education, the roles of the teacher and manager, and point out the need for specific competencies and the danger of personal data breach. Russia is now left out of the global agenda: except for a few recent cases, learning analytics is still viewed by many as more of a promise than reality. This review is aimed at shedding light on the modern understanding of learning analytics, its development in the world and in Russia, the prospects and limitations of its application in Russia from the perspective of the key stakeholders in higher education. We also propose recommendations regarding the organization of a university learning analytics system. This article will be of interest to university managers and decision-makers, teachers and scholars of higher education as it provides information on the organization of a data management system, including the collection, analysis and use of data.
Suggested Citation
K. A. Vilkova & U. S. Zakharova, 2020.
"Learning Analytics in Conventional Education: its Role and Outcomes,"
University Management: Practice and Analysis, Federal State Autonomous Educational Institution of Higher Education «Ural Federal University named after the first President of Russia B.N.Yeltsin»; Non-Commercial Partnership “University Management: Practice and, vol. 24(3).
Handle:
RePEc:adf:journl:y:2020:id:1246
DOI: 10.15826/umpa.2020.03.026
Download full text from publisher
Corrections
All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:adf:journl:y:2020:id:1246. See general information about how to correct material in RePEc.
If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.
We have no bibliographic references for this item. You can help adding them by using this form .
If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.
For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Ð ÐµÐ´Ð°ÐºÑ†Ð¸Ñ (email available below). General contact details of provider: .
Please note that corrections may take a couple of weeks to filter through
the various RePEc services.