IDEAS home Printed from https://ideas.repec.org/a/abd/kauiea/v17y2004i1no1p3-14.html
   My bibliography  Save this article

An Early Warning System for Islamic Banks Performance نظام الإنذار المبكر لأداء البنوك الإسلامية

Author

Listed:
  • MAHMOOD H. AL-OSAIMY

    (Economics Department - Faculty of Economics and Administration King Abdulaziz University - Jeddah - Saudi Arabia)

  • Ahmed S. Bamakhramah

    (Professor, Economics Department - Faculty of Economics and Administration King Abdulaziz University - Jeddah - Saudi Arabia)

Abstract

There is increasing demand for predicting the performane of Islamic banks due to the vital importance of any problem that may face these banks before it materializes and negatively affects their performance and their financial status. This will save on the costs of bad performance or failure to depositors, owners and the economy. Thus, a need arises for an early warning system which will identify the possible causes of bad performance, detect potential problem banks, facilitate surveilence of banks as well as reduce its costs and make possible proper timing of examining problem banks as well as scheduling the remedical procedures. This research aims at benefiting from the previous research efforts on the subject to develop a preliminary model for the prediction of the performance level of Islamic banks (i.e. an early warning system), hoping that this will be a cornerstone for further development and improvisation, specially as more information and data become available or accessible. To achieve such objective Discriminant Analysis technique will be utilized, whereby a Discriminant Function will be designed comprising the significant characteristics (financial ratios) as explanatory variables and the profitability rate as dependent variable. Discriminant scores are then extracted and used to distinguish between high performance and low performance groups of banks, thus forming a possible early warning system for the prediction of future performance of the observed banks. The prediction power of such a system is finally tested and conclusions drawn. تزايدات الحاجة إلى التوقع المبكر لأداء البنوك الإسلامية بسبب الأهمية المتنامية لمعالجة المشاكل أو الصعوبات التي يمكن أن تواجه هذه البنوك قبل أن تؤثر سلبا على مركزها المالي، حيث ستؤدي المعالجة المبكرة إلى تفادي ( أو على الأقل تخفيض ) تكلفة الأداء المتدني أو الفشل سواء للمودعين أو المالكين ( المساهمين) أو للنظام المصرفي والاقتصاد الوطني. لذا تنشأ الحاجة إلى نظام إنذار مبكر يمكنه التعرف مسبقا على المسببات المحتملة للأداء المتدني وتسهيل عملية مراقبة البنوك المتعثرة وتخفيض تكاليف هذه المراقبة وتحسين توقيت فحص ومن ثم معالجة مشاكل البنوك التي تواجه صعوبات في أدائيها. يهدف هذا البحث إلى تصميم نموذج مبدئي للتوقع المبكر لأداء البنوك الإسلامية ( نظام إنذار مبكر ) بالاستفادة من الأبحاث والدراسات السابقة التي استخدمت هذا المنهج في توقع أداء المنشآت المالية، أملا في تطوير هذا النموذج في المستقبل خاصة عندما تتوفر معلومات وبيانات أشمل. لتحقيق هدف البحث ينوي الباحثان استخدام منهج التحليل التمييزي ، حيث سيجري تصميم دالة تمييزية تشكل الخصائص المالية المؤثرة في مستوى أداء البنوك المدروسة، واستخدام أداء البيانات المجمعة عن هذه المتغيرات في استخراج نقاط المييز التي تستخدم للتمييز بين مجموعتي البنوك عالية الأداء ومنخفضة الأداء . أخيرا سيتم اختبار القدرة التوقعية للدوال المستخرجة وتحليل نتائج الاختبار وصياغة النتائج العامة للبحث.

Suggested Citation

  • MAHMOOD H. AL-OSAIMY & Ahmed S. Bamakhramah, 2004. "An Early Warning System for Islamic Banks Performance نظام الإنذار المبكر لأداء البنوك الإسلامية," Journal of King Abdulaziz University: Islamic Economics, King Abdulaziz University, Islamic Economics Institute., vol. 17(1), pages 3-14, January.
  • Handle: RePEc:abd:kauiea:v:17:y:2004:i:1:no:1:p:3-14
    DOI: 10.4197/islec.17-1.1
    as

    Download full text from publisher

    File URL: https://iei.kau.edu.sa/Files/121/Files/153885_IEI-VOL-17-1-06E-AlOsaimy.pdf
    Download Restriction: no

    File URL: https://libkey.io/10.4197/islec.17-1.1?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    References listed on IDEAS

    as
    1. Johnsen, Thomajean & Melicher, Ronald W., 1994. "Predicting corporate bankruptcy and financial distress: Information value added by multinomial logit models," Journal of Economics and Business, Elsevier, vol. 46(4), pages 269-286, October.
    2. Amemiya, Takeshi, 1981. "Qualitative Response Models: A Survey," Journal of Economic Literature, American Economic Association, vol. 19(4), pages 1483-1536, December.
    3. Scott, James, 1981. "The probability of bankruptcy: A comparison of empirical predictions and theoretical models," Journal of Banking & Finance, Elsevier, vol. 5(3), pages 317-344, September.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. repec:idn:journl:v:20:y:2018:i:3:p:1-18 is not listed on IDEAS
    2. Jaizah Othman & Mehmet Asutay, 2018. "Integrated early warning prediction model for Islamic banks: the Malaysian case," Journal of Banking Regulation, Palgrave Macmillan, vol. 19(2), pages 118-130, April.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Westgaard, Sjur & van der Wijst, Nico, 2001. "Default probabilities in a corporate bank portfolio: A logistic model approach," European Journal of Operational Research, Elsevier, vol. 135(2), pages 338-349, December.
    2. Hernandez Tinoco, Mario & Holmes, Phil & Wilson, Nick, 2018. "Polytomous response financial distress models: The role of accounting, market and macroeconomic variables," International Review of Financial Analysis, Elsevier, vol. 59(C), pages 276-289.
    3. Sunti Tirapat & Aekkachai Nittayagasetwat, 1999. "An Investigation of Thai Listed Firms' Financial Distress Using Macro and Micro Variables," Multinational Finance Journal, Multinational Finance Journal, vol. 3(2), pages 103-125, June.
    4. Christian Lohmann & Thorsten Ohliger, 2017. "Nonlinear Relationships and Their Effect on the Bankruptcy Prediction," Schmalenbach Business Review, Springer;Schmalenbach-Gesellschaft, vol. 18(3), pages 261-287, August.
    5. Qunfeng LIAO & Seyed MEHDIAN, 2016. "Measuring Financial Distress And Predicting Corporate Bankruptcy: An Index Approach," Review of Economic and Business Studies, Alexandru Ioan Cuza University, Faculty of Economics and Business Administration, issue 17, pages 33-51, June.
    6. Premachandra, I.M. & Bhabra, Gurmeet Singh & Sueyoshi, Toshiyuki, 2009. "DEA as a tool for bankruptcy assessment: A comparative study with logistic regression technique," European Journal of Operational Research, Elsevier, vol. 193(2), pages 412-424, March.
    7. Arturo Estrella & Anthony P. Rodrigues, 1998. "Consistent covariance matrix estimation in probit models with autocorrelated errors," Staff Reports 39, Federal Reserve Bank of New York.
    8. Seyoung Chae & Almas Heshmati, 2024. "The effects of lifetime work experience on incidence and severity of elderly poverty in Korea," Journal of Social and Economic Development, Springer;Institute for Social and Economic Change, vol. 26(2), pages 521-554, August.
    9. T.R.L. Fry & R.D. Brooks & Br. Comley & J. Zhang, 1993. "Economic Motivations for Limited Dependent and Qualitative Variable Models," The Economic Record, The Economic Society of Australia, vol. 69(2), pages 193-205, June.
    10. Suzan Hol, 2006. "The influence of the business cycle on bankruptcy probability," Discussion Papers 466, Statistics Norway, Research Department.
    11. Banerjee, Swagata (Ban) & Martin, Steven W. & Roberts, Roland K. & Larson, James A. & Hogan, Robert J., Jr. & Johnson, Jason L. & Paxton, Kenneth W. & Reeves, Jeanne M., 2007. "Adoption of Conservation-Tillage Practices in Cotton Production," 2007 Annual Meeting, February 4-7, 2007, Mobile, Alabama 34842, Southern Agricultural Economics Association.
    12. Chkir, Imed Eddine & Cosset, Jean-Claude, 2001. "Diversification strategy and capital structure of multinational corporations," Journal of Multinational Financial Management, Elsevier, vol. 11(1), pages 17-37, February.
    13. Paleti, Rajesh, 2018. "Generalized multinomial probit Model: Accommodating constrained random parameters," Transportation Research Part B: Methodological, Elsevier, vol. 118(C), pages 248-262.
    14. Maria Iacovou, 2002. "Class Size in the Early Years: Is Smaller Really Better?," Education Economics, Taylor & Francis Journals, vol. 10(3), pages 261-290.
    15. Erik Stam & Roy Thurik & Peter van der Zwan, 2010. "Entrepreneurial exit in real and imagined markets," Industrial and Corporate Change, Oxford University Press and the Associazione ICC, vol. 19(4), pages 1109-1139, August.
    16. Saem Lee & Trung Thanh Nguyen & Patrick Poppenborg & Hio-Jung Shin & Thomas Koellner, 2016. "Conventional, Partially Converted and Environmentally Friendly Farming in South Korea: Profitability and Factors Affecting Farmers’ Choice," Sustainability, MDPI, vol. 8(8), pages 1-18, July.
    17. Ahmet Kubas & I. Inan & Gokhan Unakitan & E. Erbay, 2008. "The Estimation of the Relationships between Water-Natural Gas Usage and Discharge-Emission Permission by Using Binary Logistic Model for the Industrial Establishments," Quality & Quantity: International Journal of Methodology, Springer, vol. 42(1), pages 35-44, February.
    18. Chu-Ping C. Vijverberg & Wim P. M. Vijverberg, 2016. "Pregibit: a family of binary choice models," Empirical Economics, Springer, vol. 50(3), pages 901-932, May.
    19. Pigini, Claudia, 2021. "Penalized maximum likelihood estimation of logit-based early warning systems," International Journal of Forecasting, Elsevier, vol. 37(3), pages 1156-1172.
    20. Anton Badev, 2014. "Discrete Games in Endogenous Networks: Theory and Policy," 2014 Meeting Papers 901, Society for Economic Dynamics.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:abd:kauiea:v:17:y:2004:i:1:no:1:p:3-14. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: King Abdulaziz University, Islamic Economics Institute. (email available below). General contact details of provider: https://edirc.repec.org/data/cikausa.html .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.