IDEAS home Printed from https://ideas.repec.org/r/zbw/bubdp1/4353.html
   My bibliography  Save this item

Forecasting the price of crude oil via convenience yield predictions

Citations

Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
as


Cited by:

  1. Reitz, Stefan & Rülke, Jan & Stadtmann, Georg, 2012. "Nonlinear Expectations in Speculative Markets," VfS Annual Conference 2012 (Goettingen): New Approaches and Challenges for the Labor Market of the 21st Century 62045, Verein für Socialpolitik / German Economic Association.
  2. Reitz, Stefan & Rülke, Jan-Christoph & Stadtmann, Georg, 2012. "Nonlinear expectations in speculative markets – Evidence from the ECB survey of professional forecasters," Journal of Economic Dynamics and Control, Elsevier, vol. 36(9), pages 1349-1363.
  3. He, Kaijian & Yu, Lean & Lai, Kin Keung, 2012. "Crude oil price analysis and forecasting using wavelet decomposed ensemble model," Energy, Elsevier, vol. 46(1), pages 564-574.
  4. Reitz Stefan & Rülke Jan-Christoph & Stadtmann Georg, 2010. "Regressive Oil Price Expectations Toward More Fundamental Values of the Oil Price," Journal of Economics and Statistics (Jahrbuecher fuer Nationaloekonomie und Statistik), De Gruyter, vol. 230(4), pages 454-466, August.
  5. Kilian, Lutz & Baumeister, Christiane & Zhou, Xiaoqing, 2013. "Are Product Spreads Useful for Forecasting? An Empirical Evaluation of the Verleger Hypothesis," CEPR Discussion Papers 9572, C.E.P.R. Discussion Papers.
  6. Panopoulou, Ekaterini & Pantelidis, Theologos, 2015. "Speculative behaviour and oil price predictability," Economic Modelling, Elsevier, vol. 47(C), pages 128-136.
  7. Christiane Baumeister & Lutz Kilian, 2015. "Forecasting the Real Price of Oil in a Changing World: A Forecast Combination Approach," Journal of Business & Economic Statistics, Taylor & Francis Journals, vol. 33(3), pages 338-351, July.
  8. Xiong, Tao & Bao, Yukun & Hu, Zhongyi, 2013. "Beyond one-step-ahead forecasting: Evaluation of alternative multi-step-ahead forecasting models for crude oil prices," Energy Economics, Elsevier, vol. 40(C), pages 405-415.
  9. Athanasia Dimitriadou & Periklis Gogas & Theophilos Papadimitriou & Vasilios Plakandaras, 2018. "Oil Market Efficiency under a Machine Learning Perspective," Forecasting, MDPI, vol. 1(1), pages 1-12, October.
  10. Ngene, Geoffrey M. & Wang, Jinghua, 2024. "Arbitrage opportunities and feedback trading in regulated bitcoin futures market: An intraday analysis," International Review of Economics & Finance, Elsevier, vol. 89(PB), pages 743-761.
  11. Chu, Pyung Kun & Hoff, Kristian & Molnár, Peter & Olsvik, Magnus, 2022. "Crude oil: Does the futures price predict the spot price?," Research in International Business and Finance, Elsevier, vol. 60(C).
  12. Nicholas Apergis, 2023. "Forecasting energy prices: Quantile‐based risk models," Journal of Forecasting, John Wiley & Sons, Ltd., vol. 42(1), pages 17-33, January.
  13. Julien, Chevallier & Sévi, Benoît, 2013. "A Fear Index to Predict Oil Futures Returns," Energy: Resources and Markets 156489, Fondazione Eni Enrico Mattei (FEEM).
  14. Stavros Degiannakis, George Filis, and Vipin Arora, 2018. "Oil Prices and Stock Markets: A Review of the Theory and Empirical Evidence," The Energy Journal, International Association for Energy Economics, vol. 0(Number 5).
  15. Catullo, Ermanno & Gallegati, Mauro & Russo, Alberto, 2022. "Forecasting in a complex environment: Machine learning sales expectations in a stock flow consistent agent-based simulation model," Journal of Economic Dynamics and Control, Elsevier, vol. 139(C).
  16. Emanuele De Meo, 2013. "Are Commodity Prices Driven by Fundamentals?," Economic Notes, Banca Monte dei Paschi di Siena SpA, vol. 42(1), pages 19-46, February.
  17. Reitz, Stefan & Rülke, Jan-Christoph & Stadtmann, Georg, 2009. "Are oil price forecasters finally right? Regressive expectations toward more fundamental values of the oil price," Discussion Paper Series 1: Economic Studies 2009,32, Deutsche Bundesbank.
  18. Nestor Le Clech & Carmen Fillat‐Castejón, 2017. "International aggregate agricultural supply for grain and oilseed: The effects of efficiency and technological change," Agribusiness, John Wiley & Sons, Ltd., vol. 33(4), pages 569-585, September.
  19. Carlos Caceres & Leandro Medina, 2012. "Measures of Fiscal Risk in Hydrocarbon-Exporting Countries," IMF Working Papers 2012/260, International Monetary Fund.
  20. Haas, Christian & Budin, Constantin & d’Arcy, Anne, 2024. "How to select oil price prediction models — The effect of statistical and financial performance metrics and sentiment scores," Energy Economics, Elsevier, vol. 133(C).
  21. Pincheira, Pablo & Jarsun, Nabil, 2020. "Summary of the Paper Entitled: Forecasting Fuel Prices with the Chilean Exchange Rate," MPRA Paper 105056, University Library of Munich, Germany.
  22. Slabá, Monika & Gapko, Petr & Klimešová, Andrea, 2013. "Main drivers of natural gas prices in the Czech Republic after the market liberalisation," Energy Policy, Elsevier, vol. 52(C), pages 199-212.
  23. repec:dau:papers:123456789/11714 is not listed on IDEAS
  24. Alquist, Ron & Kilian, Lutz & Vigfusson, Robert J., 2013. "Forecasting the Price of Oil," Handbook of Economic Forecasting, in: G. Elliott & C. Granger & A. Timmermann (ed.), Handbook of Economic Forecasting, edition 1, volume 2, chapter 0, pages 427-507, Elsevier.
  25. Funk, Christoph, 2018. "Forecasting the real price of oil - Time-variation and forecast combination," Energy Economics, Elsevier, vol. 76(C), pages 288-302.
  26. Phan, Dinh Hoang Bach & Narayan, Paresh Kumar & Gong, Qiang, 2021. "Terrorist attacks and oil prices: Hypothesis and empirical evidence," International Review of Financial Analysis, Elsevier, vol. 74(C).
  27. Kuper, Gerard H., 2012. "Inventories and upstream gasoline price dynamics," Energy Economics, Elsevier, vol. 34(1), pages 208-214.
  28. Naser, Hanan, 2016. "Estimating and forecasting the real prices of crude oil: A data rich model using a dynamic model averaging (DMA) approach," Energy Economics, Elsevier, vol. 56(C), pages 75-87.
  29. Hardy, Nicolás & Ferreira, Tiago & Quinteros, Maria J. & Magner, Nicolás S., 2023. "“Watch your tone!”: Forecasting mining industry commodity prices with financial report tone," Resources Policy, Elsevier, vol. 86(PA).
  30. Toni Beutler, 2012. "Forecasting Exchange Rates with Commodity Convenience Yields," Working Papers 12.03, Swiss National Bank, Study Center Gerzensee.
  31. Degiannakis, Stavros & Filis, George, 2017. "Forecasting oil prices," MPRA Paper 77531, University Library of Munich, Germany.
  32. Pincheira-Brown, Pablo & Bentancor, Andrea & Hardy, Nicolás & Jarsun, Nabil, 2022. "Forecasting fuel prices with the Chilean exchange rate: Going beyond the commodity currency hypothesis," Energy Economics, Elsevier, vol. 106(C).
  33. Toto Gunarto & Rialdi Azhar & Novita Tresiana & Supriyanto Supriyanto & Ayi Ahadiat, 2020. "Accurate Estimated Model of Volatility Crude Oil Price," International Journal of Energy Economics and Policy, Econjournals, vol. 10(5), pages 228-233.
  34. An, Haizhong & Gao, Xiangyun & Fang, Wei & Ding, Yinghui & Zhong, Weiqiong, 2014. "Research on patterns in the fluctuation of the co-movement between crude oil futures and spot prices: A complex network approach," Applied Energy, Elsevier, vol. 136(C), pages 1067-1075.
  35. repec:dau:papers:123456789/11663 is not listed on IDEAS
  36. Degiannakis, Stavros & Filis, George, 2018. "Forecasting oil prices: High-frequency financial data are indeed useful," Energy Economics, Elsevier, vol. 76(C), pages 388-402.
  37. Liu, Li & Wang, Yudong & Yang, Li, 2018. "Predictability of crude oil prices: An investor perspective," Energy Economics, Elsevier, vol. 75(C), pages 193-205.
  38. Chau, Frankie & Kuo, Jing-Ming & Shi, Yukun, 2015. "Arbitrage opportunities and feedback trading in emissions and energy markets," Journal of International Financial Markets, Institutions and Money, Elsevier, vol. 36(C), pages 130-147.
  39. Ai Han & Yanan He & Yongmiao Hong & Shouyang Wang, 2013. "Forecasting Interval-valued Crude Oil Prices via Autoregressive Conditional Interval Models," Working Papers 2013-10-14, Wang Yanan Institute for Studies in Economics (WISE), Xiamen University.
IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.