IDEAS home Printed from https://ideas.repec.org/r/wsi/qjfxxx/v06y2016i02ns2010139216500051.html
   My bibliography  Save this item

Underreaction to News in the US Stock Market

Citations

Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
as


Cited by:

  1. Calomiris, Charles W. & Mamaysky, Harry, 2019. "How news and its context drive risk and returns around the world," Journal of Financial Economics, Elsevier, vol. 133(2), pages 299-336.
  2. Bastian von Beschwitz & Donald B Keim & Massimo Massa, 2020. "First to “Read” the News: News Analytics and Algorithmic Trading," The Review of Asset Pricing Studies, Society for Financial Studies, vol. 10(1), pages 122-178.
  3. Su, Zhi & Lu, Man & Yin, Libo, 2018. "Oil prices and news-based uncertainty: Novel evidence," Energy Economics, Elsevier, vol. 72(C), pages 331-340.
  4. Li, Kun, 2018. "Reaction to news in the Chinese stock market: A study on Xiong’an New Area Strategy," Journal of Behavioral and Experimental Finance, Elsevier, vol. 19(C), pages 36-38.
  5. Prajwal Eachempati & Praveen Ranjan Srivastava, 2021. "Accounting for unadjusted news sentiment for asset pricing," Qualitative Research in Financial Markets, Emerald Group Publishing Limited, vol. 13(3), pages 383-422, May.
  6. Christina Bannier & Thomas Pauls & Andreas Walter, 2019. "Content analysis of business communication: introducing a German dictionary," Journal of Business Economics, Springer, vol. 89(1), pages 79-123, February.
  7. Nicholas Apergis & Ioannis Pragidis, 2019. "Stock Price Reactions to Wire News from the European Central Bank: Evidence from Changes in the Sentiment Tone and International Market Indexes," International Advances in Economic Research, Springer;International Atlantic Economic Society, vol. 25(1), pages 91-112, February.
  8. Liu, Sha & Han, Jingguang, 2020. "Media tone and expected stock returns," International Review of Financial Analysis, Elsevier, vol. 70(C).
  9. Sendhil Mullainathan & Andrei Shleifer, 2005. "The Market for News," American Economic Review, American Economic Association, vol. 95(4), pages 1031-1053, September.
  10. Stefan Claus & Massimo Stella, 2022. "Natural Language Processing and Cognitive Networks Identify UK Insurers’ Trends in Investor Day Transcripts," Future Internet, MDPI, vol. 14(10), pages 1-18, October.
  11. Donald B. Keim & Massimo Massa & Bastian von Beschwitz, 2018. "First to \"Read\" the News: New Analytics and Algorithmic Trading," International Finance Discussion Papers 1233, Board of Governors of the Federal Reserve System (U.S.).
  12. Mark Johnman & Bruce James Vanstone & Adrian Gepp, 2018. "Predicting FTSE 100 returns and volatility using sentiment analysis," Accounting and Finance, Accounting and Finance Association of Australia and New Zealand, vol. 58(S1), pages 253-274, November.
  13. Steven Heston & Nitish R. Sinha, 2016. "News versus Sentiment : Predicting Stock Returns from News Stories," Finance and Economics Discussion Series 2016-048, Board of Governors of the Federal Reserve System (U.S.).
  14. Frijns, Bart & Huynh, Thanh D., 2018. "Herding in analysts’ recommendations: The role of media," Journal of Banking & Finance, Elsevier, vol. 91(C), pages 1-18.
  15. Kamal, Javed Bin & Wohar, Mark, 2023. "Heterogenous responses of stock markets to covid related news and sentiments: Evidence from the 1st year of pandemic," International Economics, Elsevier, vol. 173(C), pages 68-85.
  16. Yuewen Xiao & Xiangkang Yin & Jing Zhao, 2020. "Jumps, News, And Subsequent Return Dynamics: An Intraday Study," Journal of Financial Research, Southern Finance Association;Southwestern Finance Association, vol. 43(3), pages 705-731, August.
  17. Wang, Chao & Zhang, Yue & Zhang, Weiguo & Gong, Xue, 2021. "Textual sentiment of comments and collapse of P2P platforms: Evidence from China's P2P market," Research in International Business and Finance, Elsevier, vol. 58(C).
  18. Katherine B. Ensor & Yu Han & Barbara Ostdiek & Stuart M. Turnbull, 0. "Dynamic jump intensities and news arrival in oil futures markets," Journal of Asset Management, Palgrave Macmillan, vol. 0, pages 1-34.
  19. Kristiansen, Kristian & Hvid, Anna Kirstine, 2020. "How news affects sectoral stock prices through earnings expectations and risk premia," Working Paper Series 2493, European Central Bank.
  20. Charles W. Calomiris & Harry Mamaysky, 2018. "How News and Its Context Drive Risk and Returns Around the World," NBER Working Papers 24430, National Bureau of Economic Research, Inc.
  21. Muhammad Ateeq ur REHMAN & Furman ALI & Shang XIE, 2022. "Impact of Foreign Investment News on the Return, Cost of Equity and Cash Flow Activities," Journal for Economic Forecasting, Institute for Economic Forecasting, vol. 0(4), pages 112-127, December.
  22. Soumya Mukhopadhyay, 2018. "Opinion mining in management research: the state of the art and the way forward," OPSEARCH, Springer;Operational Research Society of India, vol. 55(2), pages 221-250, June.
  23. Tom Marty & Bruce Vanstone & Tobias Hahn, 2020. "News media analytics in finance: a survey," Accounting and Finance, Accounting and Finance Association of Australia and New Zealand, vol. 60(2), pages 1385-1434, June.
  24. Wu, Chunying & Xiong, Xiong & Gao, Ya, 2022. "The role of different information sources in information spread: Evidence from three media channels in China," International Review of Economics & Finance, Elsevier, vol. 80(C), pages 327-341.
  25. Katherine B. Ensor & Yu Han & Barbara Ostdiek & Stuart M. Turnbull, 2020. "Dynamic jump intensities and news arrival in oil futures markets," Journal of Asset Management, Palgrave Macmillan, vol. 21(4), pages 292-325, July.
  26. Wright, Calvin & Swidler, Steve, 2023. "Abnormal trading volume, news and market efficiency: Evidence from the Jamaica Stock Exchange," Research in International Business and Finance, Elsevier, vol. 64(C).
  27. Ye, Jing & Xue, Minggao, 2021. "Influences of sentiment from news articles on EU carbon prices," Energy Economics, Elsevier, vol. 101(C).
  28. Al-Maadid, Alanoud & Alhazbi, Saleh & Al-Thelaya, Khaled, 2022. "Using machine learning to analyze the impact of coronavirus pandemic news on the stock markets in GCC countries," Research in International Business and Finance, Elsevier, vol. 61(C).
IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.