IDEAS home Printed from https://ideas.repec.org/r/wly/jforec/v39y2020i7p1142-1165.html
   My bibliography  Save this item

Sparse Bayesian vector autoregressions in huge dimensions

Citations

Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
as


Cited by:

  1. Pfarrhofer, Michael, 2023. "Measuring International Uncertainty Using Global Vector Autoregressions with Drifting Parameters," Macroeconomic Dynamics, Cambridge University Press, vol. 27(3), pages 770-793, April.
  2. Chan, Joshua C.C. & Yu, Xuewen, 2022. "Fast and Accurate Variational Inference for Large Bayesian VARs with Stochastic Volatility," Journal of Economic Dynamics and Control, Elsevier, vol. 143(C).
  3. Gary Koop & Stuart McIntyre & James Mitchell & Aubrey Poon, 2022. "Using hierarchical aggregation constraints to nowcast regional economic aggregates," Economic Statistics Centre of Excellence (ESCoE) Discussion Papers ESCoE DP-2022-04, Economic Statistics Centre of Excellence (ESCoE).
  4. Niko Hauzenberger & Florian Huber & Gary Koop & James Mitchell, 2023. "Bayesian Modeling of Time-Varying Parameters Using Regression Trees," Working Papers 23-05, Federal Reserve Bank of Cleveland.
  5. Joshua C. C. Chan, 2024. "BVARs and stochastic volatility," Chapters, in: Michael P. Clements & Ana Beatriz Galvão (ed.), Handbook of Research Methods and Applications in Macroeconomic Forecasting, chapter 3, pages 43-67, Edward Elgar Publishing.
  6. Deborah Gefang & Gary Koop & Aubrey Poon, 2019. "Variational Bayesian Inference in Large Vector Autoregressions with Hierarchical Shrinkage," Discussion Papers in Economics 19/05, Division of Economics, School of Business, University of Leicester.
  7. repec:wrk:wrkemf:20 is not listed on IDEAS
  8. Miranda-Agrippino, Silvia & Ricco, Giovanni, 2018. "Bayesian Vector Autoregressions," The Warwick Economics Research Paper Series (TWERPS) 1159, University of Warwick, Department of Economics.
  9. Tsionas, Mike G. & Izzeldin, Marwan & Trapani, Lorenzo, 2022. "Estimation of large dimensional time varying VARs using copulas," European Economic Review, Elsevier, vol. 141(C).
  10. Joshua C. C. Chan & Eric Eisenstat & Chenghan Hou & Gary Koop, 2020. "Composite likelihood methods for large Bayesian VARs with stochastic volatility," Journal of Applied Econometrics, John Wiley & Sons, Ltd., vol. 35(6), pages 692-711, September.
  11. James Mitchell & Gary Koop & Stuart McIntyre & Aubrey Poon, 2020. "Reconciled Estimates of Monthly GDP in the US," Economic Statistics Centre of Excellence (ESCoE) Discussion Papers ESCoE DP-2020-16, Economic Statistics Centre of Excellence (ESCoE).
  12. Chan, Joshua C.C., 2023. "Comparing stochastic volatility specifications for large Bayesian VARs," Journal of Econometrics, Elsevier, vol. 235(2), pages 1419-1446.
  13. Niko Hauzenberger, 2020. "Flexible Mixture Priors for Large Time-varying Parameter Models," Papers 2006.10088, arXiv.org, revised Nov 2020.
  14. Nima Nonejad, 2021. "An Overview Of Dynamic Model Averaging Techniques In Time‐Series Econometrics," Journal of Economic Surveys, Wiley Blackwell, vol. 35(2), pages 566-614, April.
  15. Kastner, Gregor, 2019. "Sparse Bayesian time-varying covariance estimation in many dimensions," Journal of Econometrics, Elsevier, vol. 210(1), pages 98-115.
  16. Simon Beyeler & Sylvia Kaufmann, 2021. "Reduced‐form factor augmented VAR—Exploiting sparsity to include meaningful factors," Journal of Applied Econometrics, John Wiley & Sons, Ltd., vol. 36(7), pages 989-1012, November.
  17. Florian Huber & Tam'as Krisztin & Michael Pfarrhofer, 2018. "A Bayesian panel VAR model to analyze the impact of climate change on high-income economies," Papers 1804.01554, arXiv.org, revised Feb 2021.
  18. Hauzenberger Niko & Huber Florian & Koop Gary, 2024. "Dynamic Shrinkage Priors for Large Time-Varying Parameter Regressions Using Scalable Markov Chain Monte Carlo Methods," Studies in Nonlinear Dynamics & Econometrics, De Gruyter, vol. 28(2), pages 201-225, April.
  19. Zheng, Tingguo & Ye, Shiqi & Hong, Yongmiao, 2023. "Fast estimation of a large TVP-VAR model with score-driven volatilities," Journal of Economic Dynamics and Control, Elsevier, vol. 157(C).
  20. Tamás Kiss & Hoang Nguyen & Pär Österholm, 2023. "Modelling Okun’s law: Does non-Gaussianity matter?," Empirical Economics, Springer, vol. 64(5), pages 2183-2213, May.
  21. Todd E. Clark & Florian Huber & Gary Koop & Massimiliano Marcellino & Michael Pfarrhofer, 2023. "Tail Forecasting With Multivariate Bayesian Additive Regression Trees," International Economic Review, Department of Economics, University of Pennsylvania and Osaka University Institute of Social and Economic Research Association, vol. 64(3), pages 979-1022, August.
  22. repec:wrk:wrkemf:37 is not listed on IDEAS
  23. Gary Koop & Stuart McIntyre & James Mitchell & Aubrey Poon, 2018. "Regional Output Growth in the United Kingdom: More Timely and Higher Frequency Estimates, 1970-2017," Economic Statistics Centre of Excellence (ESCoE) Discussion Papers ESCoE DP-2018-14, Economic Statistics Centre of Excellence (ESCoE).
  24. Cubadda, Gianluca & Grassi, Stefano & Guardabascio, Barbara, 2025. "The time-varying Multivariate Autoregressive Index model," International Journal of Forecasting, Elsevier, vol. 41(1), pages 175-190.
  25. Hauzenberger, Niko, 2021. "Flexible Mixture Priors for Large Time-varying Parameter Models," Econometrics and Statistics, Elsevier, vol. 20(C), pages 87-108.
  26. Lai, Wei-Ting & Chen, Ray-Bing & Chen, Ying & Koch, Thorsten, 2022. "Variational Bayesian inference for network autoregression models," Computational Statistics & Data Analysis, Elsevier, vol. 169(C).
  27. Chan, Joshua C.C., 2021. "Minnesota-type adaptive hierarchical priors for large Bayesian VARs," International Journal of Forecasting, Elsevier, vol. 37(3), pages 1212-1226.
  28. Koop, Gary & McIntyre, Stuart & Mitchell, James & Poon, Aubrey, 2024. "Using stochastic hierarchical aggregation constraints to nowcast regional economic aggregates," International Journal of Forecasting, Elsevier, vol. 40(2), pages 626-640.
  29. Huber, Florian & Zörner, Thomas O., 2019. "Threshold cointegration in international exchange rates:A Bayesian approach," International Journal of Forecasting, Elsevier, vol. 35(2), pages 458-473.
  30. Martin Feldkircher & Luis Gruber & Florian Huber & Gregor Kastner, 2024. "Sophisticated and small versus simple and sizeable: When does it pay off to introduce drifting coefficients in Bayesian vector autoregressions?," Journal of Forecasting, John Wiley & Sons, Ltd., vol. 43(6), pages 2126-2145, September.
  31. repec:hal:spmain:info:hdl:2441/27od5pb99881folvtfs8s3k16l is not listed on IDEAS
  32. Florian Huber & Gary Koop & Michael Pfarrhofer, 2020. "Bayesian Inference in High-Dimensional Time-varying Parameter Models using Integrated Rotated Gaussian Approximations," Papers 2002.10274, arXiv.org.
  33. repec:spo:wpmain:info:hdl:2441/27od5pb99881folvtfs8s3k16l is not listed on IDEAS
  34. Florian Huber & Gary Koop & Massimiliano Marcellino & Tobias Scheckel, 2024. "Bayesian modelling of VAR precision matrices using stochastic block networks," Papers 2407.16349, arXiv.org.
  35. Rub'en Loaiza-Maya & Didier Nibbering, 2022. "Efficient variational approximations for state space models," Papers 2210.11010, arXiv.org, revised Jun 2023.
  36. Florian Huber & Luca Rossini, 2020. "Inference in Bayesian Additive Vector Autoregressive Tree Models," Papers 2006.16333, arXiv.org, revised Mar 2021.
  37. Chan, Joshua C.C. & Poon, Aubrey & Zhu, Dan, 2023. "High-dimensional conditionally Gaussian state space models with missing data," Journal of Econometrics, Elsevier, vol. 236(1).
  38. Yuan Yan & Hsin-Cheng Huang & Marc G. Genton, 2021. "Vector Autoregressive Models with Spatially Structured Coefficients for Time Series on a Spatial Grid," Journal of Agricultural, Biological and Environmental Statistics, Springer;The International Biometric Society;American Statistical Association, vol. 26(3), pages 387-408, September.
  39. Bruno P. C. Levy & Hedibert F. Lopes, 2021. "Dynamic Ordering Learning in Multivariate Forecasting," Papers 2101.04164, arXiv.org, revised Nov 2021.
  40. Luis Gruber & Gregor Kastner, 2022. "Forecasting macroeconomic data with Bayesian VARs: Sparse or dense? It depends!," Papers 2206.04902, arXiv.org, revised Nov 2024.
  41. Matteo Iacopini & Luca Rossini, 2019. "Bayesian nonparametric graphical models for time-varying parameters VAR," Papers 1906.02140, arXiv.org.
  42. Michael Pfarrhofer & Anna Stelzer, 2019. "High-frequency and heteroskedasticity identification in multicountry models: Revisiting spillovers of monetary shocks," Papers 1912.03158, arXiv.org, revised Dec 2024.
  43. Sebastian Ankargren & Paulina Jon'eus, 2019. "Estimating Large Mixed-Frequency Bayesian VAR Models," Papers 1912.02231, arXiv.org.
  44. Liu, Yixuan & Kirch, Claudia & Lee, Jeong Eun & Meyer, Renate, 2024. "A nonparametrically corrected likelihood for Bayesian spectral analysis of multivariate time series," Computational Statistics & Data Analysis, Elsevier, vol. 199(C).
  45. Ghaemi Asl, Mahdi & Raheem, Ibrahim D. & Rashidi, Muhammad Mahdi, 2023. "Do stochastic risks flow between industrial and precious metals, Islamic stocks, green bonds, green stocks, clean investments, major foreign exchange rates, and Bitcoin?," Resources Policy, Elsevier, vol. 86(PA).
  46. Wu, Ping, 2024. "Should I open to forecast? Implications from a multi-country unobserved components model with sparse factor stochastic volatility," International Journal of Forecasting, Elsevier, vol. 40(3), pages 903-917.
IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.