IDEAS home Printed from https://ideas.repec.org/r/spr/annopr/v86y1999i0p141-15910.1023-a1018994432663.html
   My bibliography  Save this item

Solution algorithms for the capacitated single allocation hub location problem

Citations

Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
as


Cited by:

  1. Canovas, Lazaro & Garcia, Sergio & Marin, Alfredo, 2007. "Solving the uncapacitated multiple allocation hub location problem by means of a dual-ascent technique," European Journal of Operational Research, Elsevier, vol. 179(3), pages 990-1007, June.
  2. Azizi, Nader & Salhi, Said, 2022. "Reliable hub-and-spoke systems with multiple capacity levels and flow dependent discount factor," European Journal of Operational Research, Elsevier, vol. 298(3), pages 834-854.
  3. Samir Elhedhli & Huyu Wu, 2010. "A Lagrangean Heuristic for Hub-and-Spoke System Design with Capacity Selection and Congestion," INFORMS Journal on Computing, INFORMS, vol. 22(2), pages 282-296, May.
  4. J. Fabian Meier & Uwe Clausen, 2018. "Solving Single Allocation Hub Location Problems on Euclidean Data," Transportation Science, INFORMS, vol. 52(5), pages 1141-1155, October.
  5. Isabel Correia & Stefan Nickel & Francisco Saldanha-da-Gama, 2014. "Multi-product Capacitated Single-Allocation Hub Location Problems: Formulations and Inequalities," Networks and Spatial Economics, Springer, vol. 14(1), pages 1-25, March.
  6. Jayaswal, Sachin & Vidyarthi, Navneet, 2013. "Capacitated Multiple Allocation Hub Location with Service Level Constraints for Multiple Consignment Classes," IIMA Working Papers WP2013-11-02, Indian Institute of Management Ahmedabad, Research and Publication Department.
  7. G. Bergantiños & J. Vidal-Puga, 2020. "One-way and two-way cost allocation in hub network problems," OR Spectrum: Quantitative Approaches in Management, Springer;Gesellschaft für Operations Research e.V., vol. 42(1), pages 199-234, March.
  8. Correia, Isabel & Nickel, Stefan & Saldanha-da-Gama, Francisco, 2010. "Single-assignment hub location problems with multiple capacity levels," Transportation Research Part B: Methodological, Elsevier, vol. 44(8-9), pages 1047-1066, September.
  9. Dhyani, Sneha & Jayaswal, Sachin & Sinha, Ankur & Vidyarthi, Navneet, 2019. "Alternate Second Order Conic Programming Reformulations for Hub Location with Capacity Selection under Demand," IIMA Working Papers WP 2018-12-04, Indian Institute of Management Ahmedabad, Research and Publication Department.
  10. He, Yan & Wu, Tao & Zhang, Canrong & Liang, Zhe, 2015. "An improved MIP heuristic for the intermodal hub location problem," Omega, Elsevier, vol. 57(PB), pages 203-211.
  11. Hu, Qing-Mi & Hu, Shaolong & Wang, Jian & Li, Xiaoping, 2021. "Stochastic single allocation hub location problems with balanced utilization of hub capacities," Transportation Research Part B: Methodological, Elsevier, vol. 153(C), pages 204-227.
  12. Masaeli, Mobina & Alumur, Sibel A. & Bookbinder, James H., 2018. "Shipment scheduling in hub location problems," Transportation Research Part B: Methodological, Elsevier, vol. 115(C), pages 126-142.
  13. Miguel A. Pozo & Justo Puerto & Antonio M. Rodríguez Chía, 2021. "The ordered median tree of hubs location problem," TOP: An Official Journal of the Spanish Society of Statistics and Operations Research, Springer;Sociedad de Estadística e Investigación Operativa, vol. 29(1), pages 78-105, April.
  14. Alumur, Sibel A. & Kara, Bahar Y. & Karasan, Oya E., 2009. "The design of single allocation incomplete hub networks," Transportation Research Part B: Methodological, Elsevier, vol. 43(10), pages 936-951, December.
  15. Bütün, Cihan & Petrovic, Sanja & Muyldermans, Luc, 2021. "The capacitated directed cycle hub location and routing problem under congestion," European Journal of Operational Research, Elsevier, vol. 292(2), pages 714-734.
  16. Jayaswal, Sachin & Vidyarthi, Navneet, 2023. "Multiple allocation hub location with service level constraints for two shipment classes," European Journal of Operational Research, Elsevier, vol. 309(2), pages 634-655.
  17. Erdoğan, Güneş & Battarra, Maria & Rodríguez-Chía, Antonio M., 2022. "The hub location and pricing problem," European Journal of Operational Research, Elsevier, vol. 301(3), pages 1035-1047.
  18. Wen, Meilin & Iwamura, Kakuzo, 2008. "Fuzzy facility location-allocation problem under the Hurwicz criterion," European Journal of Operational Research, Elsevier, vol. 184(2), pages 627-635, January.
  19. Andaryan, Abdullah Zareh & Mousighichi, Kasra & Ghaffarinasab, Nader, 2024. "A heuristic approach to the stochastic capacitated single allocation hub location problem with Bernoulli demands," European Journal of Operational Research, Elsevier, vol. 312(3), pages 954-968.
  20. Wu, Yuehui & Qureshi, Ali Gul & Yamada, Tadashi, 2022. "Adaptive large neighborhood decomposition search algorithm for multi-allocation hub location routing problem," European Journal of Operational Research, Elsevier, vol. 302(3), pages 1113-1127.
  21. Nader Azizi & Navneet Vidyarthi & Satyaveer S. Chauhan, 2018. "Modelling and analysis of hub-and-spoke networks under stochastic demand and congestion," Annals of Operations Research, Springer, vol. 264(1), pages 1-40, May.
  22. Farid Momayezi & S. Kamal Chaharsooghi & Mohammad Mehdi Sepehri & Ali Husseinzadeh Kashan, 2021. "The capacitated modular single-allocation hub location problem with possibilities of hubs disruptions: modeling and a solution algorithm," Operational Research, Springer, vol. 21(1), pages 139-166, March.
  23. Correia, Isabel & Nickel, Stefan & Saldanha-da-Gama, Francisco, 2010. "The capacitated single-allocation hub location problem revisited: A note on a classical formulation," European Journal of Operational Research, Elsevier, vol. 207(1), pages 92-96, November.
  24. de Sá, Elisangela Martins & de Camargo, Ricardo Saraiva & de Miranda, Gilberto, 2013. "An improved Benders decomposition algorithm for the tree of hubs location problem," European Journal of Operational Research, Elsevier, vol. 226(2), pages 185-202.
  25. Boland, Natashia & Krishnamoorthy, Mohan & Ernst, Andreas T. & Ebery, Jamie, 2004. "Preprocessing and cutting for multiple allocation hub location problems," European Journal of Operational Research, Elsevier, vol. 155(3), pages 638-653, June.
  26. Ricardo Saraiva de Camargo & Gilberto de Miranda & Henrique Pacca L. Luna, 2009. "Benders Decomposition for Hub Location Problems with Economies of Scale," Transportation Science, INFORMS, vol. 43(1), pages 86-97, February.
  27. Alumur, Sibel A. & Campbell, James F. & Contreras, Ivan & Kara, Bahar Y. & Marianov, Vladimir & O’Kelly, Morton E., 2021. "Perspectives on modeling hub location problems," European Journal of Operational Research, Elsevier, vol. 291(1), pages 1-17.
  28. Kassem Danach & Shahin Gelareh & Rahimeh Neamatian Monemi, 2019. "The capacitated single-allocation p-hub location routing problem: a Lagrangian relaxation and a hyper-heuristic approach," EURO Journal on Transportation and Logistics, Springer;EURO - The Association of European Operational Research Societies, vol. 8(5), pages 597-631, December.
  29. Nader Ghaffarinasab & Bahar Y. Kara, 2019. "Benders Decomposition Algorithms for Two Variants of the Single Allocation Hub Location Problem," Networks and Spatial Economics, Springer, vol. 19(1), pages 83-108, March.
  30. Contreras, Ivan & Fernández, Elena, 2012. "General network design: A unified view of combined location and network design problems," European Journal of Operational Research, Elsevier, vol. 219(3), pages 680-697.
  31. Liting Chen & Sebastian Wandelt & Weibin Dai & Xiaoqian Sun, 2022. "Scalable Vertiport Hub Location Selection for Air Taxi Operations in a Metropolitan Region," INFORMS Journal on Computing, INFORMS, vol. 34(2), pages 834-856, March.
  32. S Alumur & B Y Kara, 2009. "A hub covering network design problem for cargo applications in Turkey," Journal of the Operational Research Society, Palgrave Macmillan;The OR Society, vol. 60(10), pages 1349-1359, October.
  33. Radovan MADLEŇà K & Jozef ŠTEFUNKO, 2015. "The Optimization Approach Of Postal Transportation Network Based On Uncapacitated Fixed Charge Location Model In Conditions Of Slovak Republic," Transport Problems, Silesian University of Technology, Faculty of Transport, vol. 10(4), pages 35-43, December.
  34. Saber Shiripour & Milad Hematian & Nezam Mahdavi-Amiri, 2023. "A robust optimization model for dynamic virtual hub location problem under uncertainty using an M/M/C/K queuing model: two metaheuristic algorithms," Operational Research, Springer, vol. 23(3), pages 1-52, September.
  35. Bischoff, Martin & Dächert, Kerstin, 2009. "Allocation search methods for a generalized class of location-allocation problems," European Journal of Operational Research, Elsevier, vol. 192(3), pages 793-807, February.
  36. Aloullal, Afaf & Saldanha-da-Gama, Francisco & Todosijević, Raca, 2023. "Multi-period single-allocation hub location-routing: Models and heuristic solutions," European Journal of Operational Research, Elsevier, vol. 310(1), pages 53-70.
  37. Campbell, Ann Melissa & Lowe, Timothy J. & Zhang, Li, 2007. "The p-hub center allocation problem," European Journal of Operational Research, Elsevier, vol. 176(2), pages 819-835, January.
  38. Alumur, Sibel & Kara, Bahar Y., 2008. "Network hub location problems: The state of the art," European Journal of Operational Research, Elsevier, vol. 190(1), pages 1-21, October.
  39. Ivan Contreras & Jean-François Cordeau & Gilbert Laporte, 2012. "Exact Solution of Large-Scale Hub Location Problems with Multiple Capacity Levels," Transportation Science, INFORMS, vol. 46(4), pages 439-459, November.
  40. Sneha Dhyani Bhatt & Sachin Jayaswal & Ankur Sinha & Navneet Vidyarthi, 2021. "Alternate second order conic program reformulations for hub location under stochastic demand and congestion," Annals of Operations Research, Springer, vol. 304(1), pages 481-527, September.
  41. Yang, Yuwen & Bidkhori, Hoda & Rajgopal, Jayant, 2021. "Optimizing vaccine distribution networks in low and middle-income countries," Omega, Elsevier, vol. 99(C).
  42. J. F. Campbell & A. T. Ernst & M. Krishnamoorthy, 2005. "Hub Arc Location Problems: Part I---Introduction and Results," Management Science, INFORMS, vol. 51(10), pages 1540-1555, October.
  43. Bhatt, Sneha Dhyani & Sinha, Ankur & Jayaswal, Sachin, 2024. "The capacitated r-hub interdiction problem with congestion: Models and solution approaches," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 185(C).
  44. Gelareh, Shahin & Nickel, Stefan, 2011. "Hub location problems in transportation networks," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 47(6), pages 1092-1111.
  45. Julia Sender & Thomas Siwczyk & Petra Mutzel & Uwe Clausen, 2017. "Matheuristics for optimizing the network in German wagonload traffic," EURO Journal on Computational Optimization, Springer;EURO - The Association of European Operational Research Societies, vol. 5(3), pages 367-392, September.
  46. Alumur, Sibel A. & Nickel, Stefan & Saldanha-da-Gama, Francisco, 2012. "Hub location under uncertainty," Transportation Research Part B: Methodological, Elsevier, vol. 46(4), pages 529-543.
  47. Hande Yaman & Oya Ekin Karasan & Bahar Y. Kara, 2012. "Release Time Scheduling and Hub Location for Next-Day Delivery," Operations Research, INFORMS, vol. 60(4), pages 906-917, August.
  48. Nazmi Sener & Orhan Feyzioglu, 2023. "Multiple allocation hub covering flow problem under uncertainty," Annals of Operations Research, Springer, vol. 320(2), pages 975-997, January.
  49. Rostami, Borzou & Kämmerling, Nicolas & Naoum-Sawaya, Joe & Buchheim, Christoph & Clausen, Uwe, 2021. "Stochastic single-allocation hub location," European Journal of Operational Research, Elsevier, vol. 289(3), pages 1087-1106.
  50. Mehmet R. Taner & Bahar Y. Kara, 2016. "Endogenous Effects of Hubbing on Flow Intensities," Networks and Spatial Economics, Springer, vol. 16(4), pages 1151-1181, December.
  51. Nader Azizi, 2019. "Managing facility disruption in hub-and-spoke networks: formulations and efficient solution methods," Annals of Operations Research, Springer, vol. 272(1), pages 159-185, January.
  52. Najy, Waleed & Diabat, Ali, 2020. "Benders decomposition for multiple-allocation hub-and-spoke network design with economies of scale and node congestion," Transportation Research Part B: Methodological, Elsevier, vol. 133(C), pages 62-84.
  53. Juanjo Peiró & Ángel Corberán & Rafael Martí & Francisco Saldanha-da-Gama, 2019. "Heuristic Solutions for a Class of Stochastic Uncapacitated p-Hub Median Problems," Transportation Science, INFORMS, vol. 53(4), pages 1126-1149, July.
  54. Sibel A. Alumur & Stefan Nickel & Francisco Saldanha-da-Gama & Yusuf Seçerdin, 2016. "Multi-period hub network design problems with modular capacities," Annals of Operations Research, Springer, vol. 246(1), pages 289-312, November.
  55. Neamatian Monemi, Rahimeh & Gelareh, Shahin & Nagih, Anass & Maculan, Nelson & Danach, Kassem, 2021. "Multi-period hub location problem with serial demands: A case study of humanitarian aids distribution in Lebanon," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 149(C).
  56. Contreras, Ivan & Fernández, Elena & Marín, Alfredo, 2010. "The Tree of Hubs Location Problem," European Journal of Operational Research, Elsevier, vol. 202(2), pages 390-400, April.
  57. Ivan Contreras & Juan A. Díaz & Elena Fernández, 2011. "Branch and Price for Large-Scale Capacitated Hub Location Problems with Single Assignment," INFORMS Journal on Computing, INFORMS, vol. 23(1), pages 41-55, February.
  58. Trung Hieu Tran & Jesse R. O’Hanley & M. Paola Scaparra, 2017. "Reliable Hub Network Design: Formulation and Solution Techniques," Transportation Science, INFORMS, vol. 51(1), pages 358-375, February.
  59. Yuan, Yun & Yu, Jie, 2018. "Locating transit hubs in a multi-modal transportation network: A cluster-based optimization approach," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 114(C), pages 85-103.
IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.