My bibliography
Save this item
A review of robust clustering methods
Citations
Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
Cited by:
- Pierpaolo D’Urso & Livia Giovanni & Riccardo Massari & Dario Lallo, 2013. "Noise fuzzy clustering of time series by autoregressive metric," METRON, Springer;Sapienza Università di Roma, vol. 71(3), pages 217-243, November.
- B. Lafuente-Rego & P. D’Urso & J. A. Vilar, 2020. "Robust fuzzy clustering based on quantile autocovariances," Statistical Papers, Springer, vol. 61(6), pages 2393-2448, December.
- Farnè, Matteo & Vouldis, Angelos T., 2018. "A methodology for automised outlier detection in high-dimensional datasets: an application to euro area banks' supervisory data," Working Paper Series 2171, European Central Bank.
- Marco Riani & Andrea Cerioli & Domenico Perrotta & Francesca Torti, 2015. "Simulating mixtures of multivariate data with fixed cluster overlap in FSDA library," Advances in Data Analysis and Classification, Springer;German Classification Society - Gesellschaft für Klassifikation (GfKl);Japanese Classification Society (JCS);Classification and Data Analysis Group of the Italian Statistical Society (CLADAG);International Federation of Classification Societies (IFCS), vol. 9(4), pages 461-481, December.
- Andrea Cappozzo & Francesca Greselin & Thomas Brendan Murphy, 2020. "A robust approach to model-based classification based on trimming and constraints," Advances in Data Analysis and Classification, Springer;German Classification Society - Gesellschaft für Klassifikation (GfKl);Japanese Classification Society (JCS);Classification and Data Analysis Group of the Italian Statistical Society (CLADAG);International Federation of Classification Societies (IFCS), vol. 14(2), pages 327-354, June.
- Marek A. Dąbrowski & Monika Papież & Sławomir Śmiech, 2020.
"Classifying de facto exchange rate regimes of financially open and closed economies: A statistical approach,"
The Journal of International Trade & Economic Development, Taylor & Francis Journals, vol. 29(7), pages 821-849, October.
- Dąbrowski, Marek A. & Papież, Monika & Śmiech, Sławomir, 2019. "Classifying de facto exchange rate regimes of financially open and closed economies: A statistical approach," MPRA Paper 91348, University Library of Munich, Germany.
- Breitschopf, Barbara & Burghard, Uta, 2023. "Energy transition: Financial participation and preferred design elements of German citizens," Working Papers "Sustainability and Innovation" S05/2023, Fraunhofer Institute for Systems and Innovation Research (ISI).
- C. Ruwet & L. García-Escudero & A. Gordaliza & A. Mayo-Iscar, 2013. "On the breakdown behavior of the TCLUST clustering procedure," TEST: An Official Journal of the Spanish Society of Statistics and Operations Research, Springer;Sociedad de Estadística e Investigación Operativa, vol. 22(3), pages 466-487, September.
- Pierpaolo D’Urso & Livia Giovanni & Riccardo Massari, 2021. "Trimmed fuzzy clustering of financial time series based on dynamic time warping," Annals of Operations Research, Springer, vol. 299(1), pages 1379-1395, April.
- Bratanova, Alexandra & Pham, Hien & Mason, Claire & Hajkowicz, Stefan & Naughtin, Claire & Schleiger, Emma & Sanderson, Conrad & Chen, Caron & Karimi, Sarvnaz, 2022. "Differentiating artificial intelligence activity clusters in Australia," Technology in Society, Elsevier, vol. 71(C).
- Fritz, Heinrich & García-Escudero, Luis A. & Mayo-Iscar, Agustín, 2013. "A fast algorithm for robust constrained clustering," Computational Statistics & Data Analysis, Elsevier, vol. 61(C), pages 124-136.
- Sylvia Frühwirth-Schnatter, 2011. "Panel data analysis: a survey on model-based clustering of time series," Advances in Data Analysis and Classification, Springer;German Classification Society - Gesellschaft für Klassifikation (GfKl);Japanese Classification Society (JCS);Classification and Data Analysis Group of the Italian Statistical Society (CLADAG);International Federation of Classification Societies (IFCS), vol. 5(4), pages 251-280, December.
- Ricardo Fraiman & Badih Ghattas & Marcela Svarc, 2013. "Interpretable clustering using unsupervised binary trees," Advances in Data Analysis and Classification, Springer;German Classification Society - Gesellschaft für Klassifikation (GfKl);Japanese Classification Society (JCS);Classification and Data Analysis Group of the Italian Statistical Society (CLADAG);International Federation of Classification Societies (IFCS), vol. 7(2), pages 125-145, June.
- C. Ruwet & L. García-Escudero & A. Gordaliza & A. Mayo-Iscar, 2012. "The influence function of the TCLUST robust clustering procedure," Advances in Data Analysis and Classification, Springer;German Classification Society - Gesellschaft für Klassifikation (GfKl);Japanese Classification Society (JCS);Classification and Data Analysis Group of the Italian Statistical Society (CLADAG);International Federation of Classification Societies (IFCS), vol. 6(2), pages 107-130, July.
- Alessio Farcomeni & Antonio Punzo, 2020. "Robust model-based clustering with mild and gross outliers," TEST: An Official Journal of the Spanish Society of Statistics and Operations Research, Springer;Sociedad de Estadística e Investigación Operativa, vol. 29(4), pages 989-1007, December.
- Pietro Coretto & Christian Hennig, 2016. "Robust Improper Maximum Likelihood: Tuning, Computation, and a Comparison With Other Methods for Robust Gaussian Clustering," Journal of the American Statistical Association, Taylor & Francis Journals, vol. 111(516), pages 1648-1659, October.
- Šárka Brodinová & Peter Filzmoser & Thomas Ortner & Christian Breiteneder & Maia Rohm, 2019. "Robust and sparse k-means clustering for high-dimensional data," Advances in Data Analysis and Classification, Springer;German Classification Society - Gesellschaft für Klassifikation (GfKl);Japanese Classification Society (JCS);Classification and Data Analysis Group of the Italian Statistical Society (CLADAG);International Federation of Classification Societies (IFCS), vol. 13(4), pages 905-932, December.
- Yang, Yu-Chen & Lin, Tsung-I & Castro, Luis M. & Wang, Wan-Lun, 2020. "Extending finite mixtures of t linear mixed-effects models with concomitant covariates," Computational Statistics & Data Analysis, Elsevier, vol. 148(C).
- Pedro C. Álvarez-Esteban & Luis A. García-Escudero, 2022. "Robust clustering of functional directional data," Advances in Data Analysis and Classification, Springer;German Classification Society - Gesellschaft für Klassifikation (GfKl);Japanese Classification Society (JCS);Classification and Data Analysis Group of the Italian Statistical Society (CLADAG);International Federation of Classification Societies (IFCS), vol. 16(1), pages 181-199, March.
- Maruotti, Antonello & Punzo, Antonio, 2017. "Model-based time-varying clustering of multivariate longitudinal data with covariates and outliers," Computational Statistics & Data Analysis, Elsevier, vol. 113(C), pages 475-496.
- Slaets, Leen & Claeskens, Gerda & Hubert, Mia, 2012. "Phase and amplitude-based clustering for functional data," Computational Statistics & Data Analysis, Elsevier, vol. 56(7), pages 2360-2374.
- Cardot, Hervé & Cénac, Peggy & Monnez, Jean-Marie, 2012. "A fast and recursive algorithm for clustering large datasets with k-medians," Computational Statistics & Data Analysis, Elsevier, vol. 56(6), pages 1434-1449.
- Brunet-Saumard, Camille & Genetay, Edouard & Saumard, Adrien, 2022. "K-bMOM: A robust Lloyd-type clustering algorithm based on bootstrap median-of-means," Computational Statistics & Data Analysis, Elsevier, vol. 167(C).
- Pierpaolo D’Urso & Livia De Giovanni & Riccardo Massari & Francesca G. M. Sica, 2019. "Cross Sectional and Longitudinal Fuzzy Clustering of the NUTS and Positioning of the Italian Regions with Respect to the Regional Competitiveness Index (RCI) Indicators with Contiguity Constraints," Social Indicators Research: An International and Interdisciplinary Journal for Quality-of-Life Measurement, Springer, vol. 146(3), pages 609-650, December.
- Hsin-Hsiung Huang & Jie Yang, 2020. "Affine-transformation invariant clustering models," Journal of Statistical Distributions and Applications, Springer, vol. 7(1), pages 1-24, December.
- Laura Bocci & Pierpaolo D’Urso & Vincenzina Vitale, 2021. "Clustering of the Italian Regions Based on Their Equitable and Sustainable Well-Being Indicators: A Three-Way Approach," Social Indicators Research: An International and Interdisciplinary Journal for Quality-of-Life Measurement, Springer, vol. 155(3), pages 995-1043, June.
- Pierpaolo D’Urso & Livia Giovanni & Riccardo Massari, 2015. "Trimmed fuzzy clustering for interval-valued data," Advances in Data Analysis and Classification, Springer;German Classification Society - Gesellschaft für Klassifikation (GfKl);Japanese Classification Society (JCS);Classification and Data Analysis Group of the Italian Statistical Society (CLADAG);International Federation of Classification Societies (IFCS), vol. 9(1), pages 21-40, March.