IDEAS home Printed from https://ideas.repec.org/r/pal/jorsoc/v68y2017i10d10.1057_s41274-016-0150-y.html
   My bibliography  Save this item

Electricity consumption prediction using a neural-network-based grey forecasting approach

Citations

Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
as


Cited by:

  1. Michal Pavlicko & Mária Vojteková & Oľga Blažeková, 2022. "Forecasting of Electrical Energy Consumption in Slovakia," Mathematics, MDPI, vol. 10(4), pages 1-20, February.
  2. Peng Zhang & Xin Ma & Kun She, 2019. "Forecasting Japan’s Solar Energy Consumption Using a Novel Incomplete Gamma Grey Model," Sustainability, MDPI, vol. 11(21), pages 1-23, October.
  3. Peng Zhang & Xin Ma & Kun She, 2019. "A Novel Power-Driven Grey Model with Whale Optimization Algorithm and Its Application in Forecasting the Residential Energy Consumption in China," Complexity, Hindawi, vol. 2019, pages 1-22, November.
  4. Kostadin Yotov & Emil Hadzhikolev & Stanka Hadzhikoleva & Stoyan Cheresharov, 2022. "Neuro-Cybernetic System for Forecasting Electricity Consumption in the Bulgarian National Power System," Sustainability, MDPI, vol. 14(17), pages 1-18, September.
  5. Wu, Wen-Ze & Pang, Haodan & Zheng, Chengli & Xie, Wanli & Liu, Chong, 2021. "Predictive analysis of quarterly electricity consumption via a novel seasonal fractional nonhomogeneous discrete grey model: A case of Hubei in China," Energy, Elsevier, vol. 229(C).
  6. Liqian Zhang & Xueliang Fu & Honghui Li, 2020. "A tags’ arrival rate estimation method using weighted grey model(1,1) and sliding window in mobile radio frequency identification systems," International Journal of Distributed Sensor Networks, , vol. 16(10), pages 15501477209, October.
  7. Du, Xiaoyi & Wu, Dongdong & Yan, Yabo, 2023. "Prediction of electricity consumption based on GM(1,Nr) model in Jiangsu province, China," Energy, Elsevier, vol. 262(PA).
  8. Sharif Shofirun Sharif Ali & Muhammad Rizal Razman & Azahan Awang & M. R. M. Asyraf & M. R. Ishak & R. A. Ilyas & Roderick John Lawrence, 2021. "Critical Determinants of Household Electricity Consumption in a Rapidly Growing City," Sustainability, MDPI, vol. 13(8), pages 1-20, April.
  9. Małgorzata Sztorc, 2022. "The Implementation of the European Green Deal Strategy as a Challenge for Energy Management in the Face of the COVID-19 Pandemic," Energies, MDPI, vol. 15(7), pages 1-21, April.
  10. Ding, Jia & Wang, Maolin & Ping, Zuowei & Fu, Dongfei & Vassiliadis, Vassilios S., 2020. "An integrated method based on relevance vector machine for short-term load forecasting," European Journal of Operational Research, Elsevier, vol. 287(2), pages 497-510.
  11. Yi-Chung Hu, 2023. "Tourism combination forecasting using a dynamic weighting strategy with change-point analysis," Current Issues in Tourism, Taylor & Francis Journals, vol. 26(14), pages 2357-2374, July.
  12. Xiong, Xin & Hu, Xi & Guo, Huan, 2021. "A hybrid optimized grey seasonal variation index model improved by whale optimization algorithm for forecasting the residential electricity consumption," Energy, Elsevier, vol. 234(C).
  13. Sehrish Malik & DoHyeun Kim, 2018. "Prediction-Learning Algorithm for Efficient Energy Consumption in Smart Buildings Based on Particle Regeneration and Velocity Boost in Particle Swarm Optimization Neural Networks," Energies, MDPI, vol. 11(5), pages 1-21, May.
  14. Geng Wu & Yi-Chung Hu & Yu-Jing Chiu & Shu-Ju Tsao, 2023. "A new multivariate grey prediction model for forecasting China’s regional energy consumption," Environment, Development and Sustainability: A Multidisciplinary Approach to the Theory and Practice of Sustainable Development, Springer, vol. 25(5), pages 4173-4193, May.
  15. Ding, Song & Hipel, Keith W. & Dang, Yao-guo, 2018. "Forecasting China's electricity consumption using a new grey prediction model," Energy, Elsevier, vol. 149(C), pages 314-328.
  16. Qingqing Ji & Shiyu Zhang & Qiao Duan & Yuhan Gong & Yaowei Li & Xintong Xie & Jikang Bai & Chunli Huang & Xu Zhao, 2022. "Short- and Medium-Term Power Demand Forecasting with Multiple Factors Based on Multi-Model Fusion," Mathematics, MDPI, vol. 10(12), pages 1-30, June.
  17. Yi-Chung Hu, 2021. "Forecasting tourism demand using fractional grey prediction models with Fourier series," Annals of Operations Research, Springer, vol. 300(2), pages 467-491, May.
  18. Yeqi An & Yulin Zhou & Rongrong Li, 2019. "Forecasting India’s Electricity Demand Using a Range of Probabilistic Methods," Energies, MDPI, vol. 12(13), pages 1-24, July.
  19. Peng Jiang & Yi-Chung Hu & Wenbao Wang & Hang Jiang & Geng Wu, 2020. "Interval Grey Prediction Models with Forecast Combination for Energy Demand Forecasting," Mathematics, MDPI, vol. 8(6), pages 1-12, June.
  20. Yi-Chung Hu & Peng Jiang & Jung-Fa Tsai & Ching-Ying Yu, 2021. "An Optimized Fractional Grey Prediction Model for Carbon Dioxide Emissions Forecasting," IJERPH, MDPI, vol. 18(2), pages 1-12, January.
  21. Luo, Xilin & Duan, Huiming & Xu, Kai, 2021. "A novel grey model based on traditional Richards model and its application in COVID-19," Chaos, Solitons & Fractals, Elsevier, vol. 142(C).
  22. Zhu, Xiaoyue & Dang, Yaoguo & Ding, Song, 2020. "Using a self-adaptive grey fractional weighted model to forecast Jiangsu’s electricity consumption in China," Energy, Elsevier, vol. 190(C).
  23. R. Rajesh, 2022. "A novel advanced grey incidence analysis for investigating the level of resilience in supply chains," Annals of Operations Research, Springer, vol. 308(1), pages 441-490, January.
  24. Abdulgani Kahraman & Mehmed Kantardzic & Muhammet Mustafa Kahraman & Muhammed Kotan, 2021. "A Data-Driven Multi-Regime Approach for Predicting Energy Consumption," Energies, MDPI, vol. 14(20), pages 1-17, October.
  25. Qasem Abu Al-Haija, 2021. "A Stochastic Estimation Framework for Yearly Evolution of Worldwide Electricity Consumption," Forecasting, MDPI, vol. 3(2), pages 1-11, April.
  26. Paul Anton Verwiebe & Stephan Seim & Simon Burges & Lennart Schulz & Joachim Müller-Kirchenbauer, 2021. "Modeling Energy Demand—A Systematic Literature Review," Energies, MDPI, vol. 14(23), pages 1-58, November.
  27. Dengyong Zhang & Haixin Tong & Feng Li & Lingyun Xiang & Xiangling Ding, 2020. "An Ultra-Short-Term Electrical Load Forecasting Method Based on Temperature-Factor-Weight and LSTM Model," Energies, MDPI, vol. 13(18), pages 1-14, September.
  28. Wang, Lin & Hu, Huanling & Ai, Xue-Yi & Liu, Hua, 2018. "Effective electricity energy consumption forecasting using echo state network improved by differential evolution algorithm," Energy, Elsevier, vol. 153(C), pages 801-815.
IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.