IDEAS home Printed from https://ideas.repec.org/r/pal/jorsoc/v55y2004i10d10.1057_palgrave.jors.2601759.html
   My bibliography  Save this item

Constructions of economic functions and calculations of marginal rates in DEA using parametric optimization methods

Citations

Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
as


Cited by:

  1. V E Krivonozhko & O B Utkin & M M Safin & A V Lychev, 2009. "On some generalization of the DEA models," Journal of the Operational Research Society, Palgrave Macmillan;The OR Society, vol. 60(11), pages 1518-1527, November.
  2. Krivonozhko, Vladimir E. & Førsund, Finn R. & Lychev, Andrey V., 2012. "A note on imposing strong complementary slackness conditions in DEA," European Journal of Operational Research, Elsevier, vol. 220(3), pages 716-721.
  3. Vladimir Krivonozhko & Finn Førsund & Andrey Lychev, 2012. "Returns-to-scale properties in DEA models: the fundamental role of interior points," Journal of Productivity Analysis, Springer, vol. 38(2), pages 121-130, October.
  4. Krivonozhko, Vladimir E. & Førsund, Finn R. & Lychev, Andrey V., 2012. "Identifying Suspicious Efficient Units in DEA Models," Memorandum 30/2012, Oslo University, Department of Economics.
  5. Michael Zschille, 2014. "Nonparametric measures of returns to scale: an application to German water supply," Empirical Economics, Springer, vol. 47(3), pages 1029-1053, November.
  6. Zelenyuk, Valentin, 2013. "A scale elasticity measure for directional distance function and its dual: Theory and DEA estimation," European Journal of Operational Research, Elsevier, vol. 228(3), pages 592-600.
  7. Kristiaan Kerstens & Ignace Van de Woestyne, 2021. "Cost functions are nonconvex in the outputs when the technology is nonconvex: convexification is not harmless," Annals of Operations Research, Springer, vol. 305(1), pages 81-106, October.
  8. Podinovski, Victor V. & Førsund, Finn R. & Krivonozhko, Vladimir E., 2009. "A simple derivation of scale elasticity in data envelopment analysis," European Journal of Operational Research, Elsevier, vol. 197(1), pages 149-153, August.
  9. Victor V. Podinovski & Finn R. Førsund, 2010. "Differential Characteristics of Efficient Frontiers in Data Envelopment Analysis," Operations Research, INFORMS, vol. 58(6), pages 1743-1754, December.
  10. Victor V. Podinovski & Robert G. Chambers & Kazim Baris Atici & Iryna D. Deineko, 2016. "Marginal Values and Returns to Scale for Nonparametric Production Frontiers," Operations Research, INFORMS, vol. 64(1), pages 236-250, February.
  11. Walheer, Barnabé, 2018. "Scale efficiency for multi-output cost minimizing producers: The case of the US electricity plants," Energy Economics, Elsevier, vol. 70(C), pages 26-36.
  12. Førsund, Finn & Krivonozhko, Vladimir W & Lychev, Andrey V., 2016. "Smoothing the frontier in the DEA models," Memorandum 11/2016, Oslo University, Department of Economics.
  13. K. Tone & M. Tsutsui, 2015. "How to Deal with Non-Convex Frontiers in Data Envelopment Analysis," Journal of Optimization Theory and Applications, Springer, vol. 166(3), pages 1002-1028, September.
  14. Chia-Yen Lee, 2017. "Directional marginal productivity: a foundation of meta-data envelopment analysis," Journal of the Operational Research Society, Palgrave Macmillan;The OR Society, vol. 68(5), pages 544-555, May.
  15. Noah J Miller & Jason S Bergtold & Allen M Featherstone, 2019. "Economic elasticities of input substitution using data envelopment analysis," PLOS ONE, Public Library of Science, vol. 14(8), pages 1-15, August.
  16. Vladimir Krivonozhko & Finn Førsund & Andrey Lychev, 2015. "Terminal units in DEA: definition and determination," Journal of Productivity Analysis, Springer, vol. 43(2), pages 151-164, April.
  17. Petros Hadjicostas & Andreas Soteriou, 2010. "Different orders of one-sided scale elasticities in multi-output production," Journal of Productivity Analysis, Springer, vol. 33(2), pages 147-167, April.
  18. F R Førsund & S A C Kittelsen & V E Krivonozhko, 2009. "Farrell revisited–Visualizing properties of DEA production frontiers," Journal of the Operational Research Society, Palgrave Macmillan;The OR Society, vol. 60(11), pages 1535-1545, November.
  19. Zelenyuk, Valentin, 2015. "Aggregation of scale efficiency," European Journal of Operational Research, Elsevier, vol. 240(1), pages 269-277.
  20. Førsund, Finn R. & Kittelsen, Sverre A. & Krivonozhko, Vladimir E., 2007. "Farrell Revisited: Visualising the DEA Production Frontier," Memorandum 15/2007, Oslo University, Department of Economics.
  21. Finn Førsund & Lennart Hjalmarsson & Vladimir Krivonozhko & Oleg Utkin, 2007. "Calculation of scale elasticities in DEA models: direct and indirect approaches," Journal of Productivity Analysis, Springer, vol. 28(1), pages 45-56, October.
  22. Alexander P. Afanasiev & Vladimir E. Krivonozhko & Andrey V. Lychev & Oleg V. Sukhoroslov, 2020. "Multidimensional frontier visualization based on optimization methods using parallel computations," Journal of Global Optimization, Springer, vol. 76(3), pages 563-574, March.
  23. Brandon Pope & Andrew Johnson, 2013. "Returns to scope: a metric for production synergies demonstrated for hospital production," Journal of Productivity Analysis, Springer, vol. 40(2), pages 239-250, October.
  24. V E Krivonozhko & O B Utkin & A V Volodin & I A Sablin, 2005. "About the structure of boundary points in DEA," Journal of the Operational Research Society, Palgrave Macmillan;The OR Society, vol. 56(12), pages 1373-1378, December.
  25. Mahdi Mirjaberi & Reza Kazemi Matin, 2016. "On the Calculation of Directional Scale Elasticity in Data Envelopment Analysis," Asia-Pacific Journal of Operational Research (APJOR), World Scientific Publishing Co. Pte. Ltd., vol. 33(04), pages 1-17, August.
  26. Atici, Kazim Baris & Podinovski, Victor V., 2012. "Mixed partial elasticities in constant returns-to-scale production technologies," European Journal of Operational Research, Elsevier, vol. 220(1), pages 262-269.
IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.