IDEAS home Printed from https://ideas.repec.org/r/oec/stdkab/5jz417f7b7nv.html
   My bibliography  Save this item

Dynamic factor models: A review of the literature

Citations

Blog mentions

As found by EconAcademics.org, the blog aggregator for Economics research:
  1. Guest Contribution: “Nowcasting Global GDP Growth”
    by Menzie Chinn in Econbrowser on 2015-03-12 09:56:18

Citations

Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
as


Cited by:

  1. Carlos Cesar Trucios-Maza & João H. G Mazzeu & Luis K. Hotta & Pedro L. Valls Pereira & Marc Hallin, 2019. "On the robustness of the general dynamic factor model with infinite-dimensional space: identification, estimation, and forecasting," Working Papers ECARES 2019-32, ULB -- Universite Libre de Bruxelles.
  2. Mattia Guerini & Duc Thi Luu & Mauro Napoletano, 2023. "Synchronization patterns in the European Union," Applied Economics, Taylor & Francis Journals, vol. 55(18), pages 2038-2059, April.
  3. Hui ‘Fox’ Ling & Christian Franzen, 2017. "Online learning of time-varying stochastic factor structure by variational sequential Bayesian factor analysis," Quantitative Finance, Taylor & Francis Journals, vol. 17(8), pages 1277-1304, August.
  4. Carlos Trucíos & João H. G. Mazzeu & Marc Hallin & Luiz K. Hotta & Pedro L. Valls Pereira & Mauricio Zevallos, 2022. "Forecasting Conditional Covariance Matrices in High-Dimensional Time Series: A General Dynamic Factor Approach," Journal of Business & Economic Statistics, Taylor & Francis Journals, vol. 41(1), pages 40-52, December.
  5. repec:hal:spmain:info:hdl:2441/5q8fnecj1u87ka099dc571bhi2 is not listed on IDEAS
  6. David Havrlant & Peter Tóth & Julia Wörz, 2016. "On the optimal number of indicators – nowcasting GDP growth in CESEE," Focus on European Economic Integration, Oesterreichische Nationalbank (Austrian Central Bank), issue 4, pages 54-72.
  7. Amélie Charles & Olivier Darné, 2022. "Backcasting world trade growth using data reduction methods," The World Economy, Wiley Blackwell, vol. 45(10), pages 3169-3191, October.
  8. Tóth, Peter, 2014. "Malý dynamický faktorový model na krátkodobé prognózovanie slovenského HDP [A Small Dynamic Factor Model for the Short-Term Forecasting of Slovak GDP]," MPRA Paper 63713, University Library of Munich, Germany.
  9. Poncela, Pilar & Ruiz, Esther & Miranda, Karen, 2021. "Factor extraction using Kalman filter and smoothing: This is not just another survey," International Journal of Forecasting, Elsevier, vol. 37(4), pages 1399-1425.
  10. L. Ferrara. & G. Sestieri., 2014. "US labour market and monetary policy: current debates and challenges," Quarterly selection of articles - Bulletin de la Banque de France, Banque de France, issue 36, pages 111-129, winter.
  11. Trucíos, Carlos & Mazzeu, João H.G. & Hotta, Luiz K. & Valls Pereira, Pedro L. & Hallin, Marc, 2021. "Robustness and the general dynamic factor model with infinite-dimensional space: Identification, estimation, and forecasting," International Journal of Forecasting, Elsevier, vol. 37(4), pages 1520-1534.
  12. Catherine Doz & Peter Fuleky, 2019. "Dynamic Factor Models," Working Papers halshs-02262202, HAL.
  13. Herwartz, Helmut & Ochsner, Christian & Rohloff, Hannes, 2020. "The credit composition of global liquidity," University of Göttingen Working Papers in Economics 409, University of Goettingen, Department of Economics.
  14. repec:spo:wpmain:info:hdl:2441/5q8fnecj1u87ka099dc571bhi2 is not listed on IDEAS
  15. Camacho, Maximo & Perez-Quiros, Gabriel & Poncela, Pilar, 2018. "Markov-switching dynamic factor models in real time," International Journal of Forecasting, Elsevier, vol. 34(4), pages 598-611.
  16. Amélie Charles & Olivier Darné & Fabien Tripier, 2017. "Uncertainty and the Macroeconomy," Post-Print hal-01549625, HAL.
  17. Karen Poghosyan & Ruben Poghosyan, 2021. "On the Applicability of Dynamic Factor Models for Forecasting Real GDP Growth in Armenia," Czech Journal of Economics and Finance (Finance a uver), Charles University Prague, Faculty of Social Sciences, vol. 71(1), pages 52-79, June.
  18. repec:hum:wpaper:sfb649dp2014-004 is not listed on IDEAS
  19. Juan Laborda & Sonia Ruano & Ignacio Zamanillo, 2023. "Multi-Country and Multi-Horizon GDP Forecasting Using Temporal Fusion Transformers," Mathematics, MDPI, vol. 11(12), pages 1-26, June.
  20. Duangnate, Kannika & Mjelde, James W., 2017. "Comparison of data-rich and small-scale data time series models generating probabilistic forecasts: An application to U.S. natural gas gross withdrawals," Energy Economics, Elsevier, vol. 65(C), pages 411-423.
  21. Amélie Charles & Olivier Darné & Fabien Tripier, 2018. "Uncertainty and the macroeconomy: evidence from an uncertainty composite indicator," Applied Economics, Taylor & Francis Journals, vol. 50(10), pages 1093-1107, February.
  22. Focardi, Sergio M. & Fabozzi, Frank J. & Mitov, Ivan K., 2016. "A new approach to statistical arbitrage: Strategies based on dynamic factor models of prices and their performance," Journal of Banking & Finance, Elsevier, vol. 65(C), pages 134-155.
  23. Lütkepohl, Helmut, 2014. "Structural vector autoregressive analysis in a data rich environment: A survey," SFB 649 Discussion Papers 2014-004, Humboldt University Berlin, Collaborative Research Center 649: Economic Risk.
  24. Ferrara , L. & Marsilli, C., 2016. "Nowcasting global economic growth," Rue de la Banque, Banque de France, issue 23, April..
  25. Massimiliano Caporin & C. Vladimir Rodríguez-Caballero & Esther Ruiz, 2024. "The factor structure of exchange rates volatility: global and intermittent factors," Empirical Economics, Springer, vol. 67(1), pages 31-45, July.
  26. Amélie Charles & Olivier Darné & Fabien Tripier, 2018. "Uncertainty and the Macroeconomy: Evidence from an uncertainty composite indicator," Post-Print hal-01757042, HAL.
  27. Marijn A. Bolhuis & Brett Rayner, 2020. "Deus ex Machina? A Framework for Macro Forecasting with Machine Learning," IMF Working Papers 2020/045, International Monetary Fund.
  28. Denisa Georgiana Banulescu & Ferrara Laurent & Marsilli Clément, 2019. "Prévoir la volatilité d’un actif financier à l’aide d’un modèle à mélange de fréquences," Working Papers hal-03563168, HAL.
  29. Karmous, Aida & Boubaker, Heni & Belkacem, Lotfi, 2019. "A dynamic factor model with stylized facts to forecast volatility for an optimal portfolio," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 534(C).
IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.