IDEAS home Printed from https://ideas.repec.org/r/mcb/jmoncb/v39y2007i7p1613-1649.html
   My bibliography  Save this item

A Generalized Extreme Value Approach to Financial Risk Measurement

Citations

Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
as


Cited by:

  1. Li, Longqing, 2017. "A Comparative Study of GARCH and EVT Model in Modeling Value-at-Risk," MPRA Paper 85645, University Library of Munich, Germany.
  2. Karmakar, Madhusudan, 2013. "Estimation of tail-related risk measures in the Indian stock market: An extreme value approach," Review of Financial Economics, Elsevier, vol. 22(3), pages 79-85.
  3. Farkas, Walter & Fringuellotti, Fulvia & Tunaru, Radu, 2020. "A cost-benefit analysis of capital requirements adjusted for model risk," Journal of Corporate Finance, Elsevier, vol. 65(C).
  4. Sahibzada, Irfan Ullah & Rizwan, Muhammad Suhail & Qureshi, Anum, 2022. "Impact of sovereign credit ratings on systemic risk and the moderating role of regulatory reforms: An international investigation," Journal of Banking & Finance, Elsevier, vol. 145(C).
  5. Chun-Pin Hsu & Chin-Wen Huang & Wan-Jiun Chiou, 2012. "Effectiveness of copula-extreme value theory in estimating value-at-risk: empirical evidence from Asian emerging markets," Review of Quantitative Finance and Accounting, Springer, vol. 39(4), pages 447-468, November.
  6. Gatfaoui, Hayette, 2015. "Pricing the (European) option to switch between two energy sources: An application to crude oil and natural gas," Energy Policy, Elsevier, vol. 87(C), pages 270-283.
  7. Marco Rocco, 2011. "Extreme value theory for finance: a survey," Questioni di Economia e Finanza (Occasional Papers) 99, Bank of Italy, Economic Research and International Relations Area.
  8. Benjamin R. Auer & Benjamin Mögel, 2016. "How Accurate are Modern Value-at-Risk Estimators Derived from Extreme Value Theory?," CESifo Working Paper Series 6288, CESifo.
  9. Kim, Young Shin & Rachev, Svetlozar T. & Bianchi, Michele Leonardo & Mitov, Ivan & Fabozzi, Frank J., 2011. "Time series analysis for financial market meltdowns," Journal of Banking & Finance, Elsevier, vol. 35(8), pages 1879-1891, August.
  10. Candia, Claudio & Herrera, Rodrigo, 2024. "An empirical review of dynamic extreme value models for forecasting value at risk, expected shortfall and expectile," Journal of Empirical Finance, Elsevier, vol. 77(C).
  11. Hussain, Saiful Izzuan & Li, Steven, 2018. "The dependence structure between Chinese and other major stock markets using extreme values and copulas," International Review of Economics & Finance, Elsevier, vol. 56(C), pages 421-437.
  12. Benjamin Mögel & Benjamin R. Auer, 2018. "How accurate are modern Value-at-Risk estimators derived from extreme value theory?," Review of Quantitative Finance and Accounting, Springer, vol. 50(4), pages 979-1030, May.
  13. Julia S. Mehlitz & Benjamin R. Auer, 2021. "Time‐varying dynamics of expected shortfall in commodity futures markets," Journal of Futures Markets, John Wiley & Sons, Ltd., vol. 41(6), pages 895-925, June.
  14. Samet Gunay & Audil Rashid Khaki, 2018. "Best Fitting Fat Tail Distribution for the Volatilities of Energy Futures: Gev, Gat and Stable Distributions in GARCH and APARCH Models," JRFM, MDPI, vol. 11(2), pages 1-19, June.
  15. Basu, Sanjay, 2011. "Comparing simulation models for market risk stress testing," European Journal of Operational Research, Elsevier, vol. 213(1), pages 329-339, August.
  16. Yannick Hoga, 2023. "The Estimation Risk in Extreme Systemic Risk Forecasts," Papers 2304.10349, arXiv.org.
  17. Jinwook Lee & Sejeong Oh & Jongjin Baik & Changhyun Jun & Jungho Seo & Eui Hoon Lee, 2024. "Grid-Based Precipitation Quantile Estimation Considering Homogeneity Using ERA5-Land Data for the Korean Peninsula," Sustainability, MDPI, vol. 16(21), pages 1-26, October.
  18. Madhusudan Karmakar, 2013. "Estimation of tail‐related risk measures in the Indian stock market: An extreme value approach," Review of Financial Economics, John Wiley & Sons, vol. 22(3), pages 79-85, September.
  19. Katarina Valaskova & Tomas Kliestik & Lucia Svabova & Peter Adamko, 2018. "Financial Risk Measurement and Prediction Modelling for Sustainable Development of Business Entities Using Regression Analysis," Sustainability, MDPI, vol. 10(7), pages 1-15, June.
  20. Brée, David S. & Joseph, Nathan Lael, 2013. "Testing for financial crashes using the Log Periodic Power Law model," International Review of Financial Analysis, Elsevier, vol. 30(C), pages 287-297.
  21. Rizwan, Muhammad Suhail & Ahmad, Ghufran & Ashraf, Dawood, 2020. "Systemic risk: The impact of COVID-19," Finance Research Letters, Elsevier, vol. 36(C).
  22. Tolikas, Konstantinos, 2014. "Unexpected tails in risk measurement: Some international evidence," Journal of Banking & Finance, Elsevier, vol. 40(C), pages 476-493.
  23. Aranit Muja, 2018. "Extreme Value of Intraday Returns," Academic Journal of Interdisciplinary Studies, Richtmann Publishing Ltd, vol. 7, November.
  24. Hassan A. Fallahgoul & Young S. Kim & Frank J. Fabozzi, 2016. "Elliptical tempered stable distribution," Quantitative Finance, Taylor & Francis Journals, vol. 16(7), pages 1069-1087, July.
  25. Lang, Korbinian & Auer, Benjamin R., 2020. "The economic and financial properties of crude oil: A review," The North American Journal of Economics and Finance, Elsevier, vol. 52(C).
  26. Manel Youssef & Lotfi Belkacem & Khaled Mokni, 2015. "Extreme Value Theory and long-memory-GARCH Framework: Application to Stock Market," International Journal of Economics and Empirical Research (IJEER), The Economics and Social Development Organization (TESDO), vol. 3(8), pages 371-388, August.
  27. Hamid Mohtadi & Bryan S. Weber, 2021. "Catastrophe And Rational Policy: Case Of National Security," Economic Inquiry, Western Economic Association International, vol. 59(1), pages 140-161, January.
IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.