IDEAS home Printed from https://ideas.repec.org/r/jof/jforec/v24y2005i8p575-592.html
   My bibliography  Save this item

Nowcasting quarterly GDP growth in a monthly coincident indicator model

Citations

Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
as


Cited by:

  1. Lucia Alessi & Eric Ghysels & Luca Onorante & Richard Peach & Simon Potter, 2014. "Central Bank Macroeconomic Forecasting During the Global Financial Crisis: The European Central Bank and Federal Reserve Bank of New York Experiences," Journal of Business & Economic Statistics, Taylor & Francis Journals, vol. 32(4), pages 483-500, October.
  2. Galbraith, John W. & Tkacz, Greg, 2018. "Nowcasting with payments system data," International Journal of Forecasting, Elsevier, vol. 34(2), pages 366-376.
  3. Raquel Nadal Cesar Gonçalves, 2022. "Nowcasting Brazilian GDP with Electronic Payments Data," Working Papers Series 564, Central Bank of Brazil, Research Department.
  4. Helena Rodríguez, 2014. "Un indicador de la evolución del PIB uruguayo en tiempo real," Documentos de trabajo 2014009, Banco Central del Uruguay.
  5. John W. Galbraith & Greg Tkacz, 2013. "Nowcasting GDP: Electronic Payments, Data Vintages and the Timing of Data Releases," CIRANO Working Papers 2013s-25, CIRANO.
  6. David Havrlant & Peter Tóth & Julia Wörz, 2016. "On the optimal number of indicators – nowcasting GDP growth in CESEE," Focus on European Economic Integration, Oesterreichische Nationalbank (Austrian Central Bank), issue 4, pages 54-72.
  7. Peter Fuleky & Carl Bonham, 2010. "Forecasting Based on Common Trends in Mixed Frequency Samples," Working Papers 2010-17R1, University of Hawaii Economic Research Organization, University of Hawaii at Manoa, revised Jul 2013.
  8. Kosei Fukuda, 2009. "Related-variables selection in temporal disaggregation," Journal of Forecasting, John Wiley & Sons, Ltd., vol. 28(4), pages 343-357.
  9. John Galbraith & Greg Tkacz, 2007. "Electronic Transactions as High-Frequency Indicators of Economic Activity," Staff Working Papers 07-58, Bank of Canada.
  10. Schumacher Christian, 2011. "Forecasting with Factor Models Estimated on Large Datasets: A Review of the Recent Literature and Evidence for German GDP," Journal of Economics and Statistics (Jahrbuecher fuer Nationaloekonomie und Statistik), De Gruyter, vol. 231(1), pages 28-49, February.
  11. Elena Andreou & Patrick Gagliardini & Eric Ghysels & Mirco Rubin, 2016. "Is Industrial Production Still the Dominant Factor for the US Economy?," Swiss Finance Institute Research Paper Series 16-11, Swiss Finance Institute.
  12. Pérez-Quirós, Gabriel & Camacho, Máximo & Alvarez, Rocio, 2012. "Finite sample performance of small versus large scale dynamic factor models," CEPR Discussion Papers 8867, C.E.P.R. Discussion Papers.
  13. Peter Fuleky & Carl, 2013. "Forecasting with Mixed Frequency Samples: The Case of Common Trends," Working Papers 2013-5, University of Hawaii Economic Research Organization, University of Hawaii at Manoa.
  14. Schumacher, Christian & Breitung, Jörg, 2008. "Real-time forecasting of German GDP based on a large factor model with monthly and quarterly data," International Journal of Forecasting, Elsevier, vol. 24(3), pages 386-398.
  15. Ryan T. Ball & Eric Ghysels, 2018. "Automated Earnings Forecasts: Beat Analysts or Combine and Conquer?," Management Science, INFORMS, vol. 64(10), pages 4936-4952, October.
  16. Evren Erdogan Cosar & Sevim Kosem & Cagri Sarikaya, 2013. "Do We Really Need Filters In Estimating Output Gap? : Evidence From Turkey," Working Papers 1333, Research and Monetary Policy Department, Central Bank of the Republic of Turkey.
  17. José Casals & Miguel Jerez & Sonia Sotoca, 2009. "Modelling and forecasting time series sampled at different frequencies," Journal of Forecasting, John Wiley & Sons, Ltd., vol. 28(4), pages 316-342.
  18. Alvarez, Rocio & Camacho, Maximo & Perez-Quiros, Gabriel, 2016. "Aggregate versus disaggregate information in dynamic factor models," International Journal of Forecasting, Elsevier, vol. 32(3), pages 680-694.
  19. Klaus Wohlrabe, 2009. "Makroökonomische Prognosen mit gemischten Frequenzen," ifo Schnelldienst, ifo Institute - Leibniz Institute for Economic Research at the University of Munich, vol. 62(21), pages 22-33, November.
  20. Namwon Hyung & Clive W.J. Granger, 2008. "Linking series generated at different frequencies This work is part of a PhD dissertation presented at the University of California, San Diego (1999)," Journal of Forecasting, John Wiley & Sons, Ltd., vol. 27(2), pages 95-108.
  21. Ghysels, Eric & Ball, Ryan, 2017. "Automated Earnings Forecasts:- Beat Analysts or Combine and Conquer?," CEPR Discussion Papers 12179, C.E.P.R. Discussion Papers.
  22. Abdić Ademir & Resić Emina & Abdić Adem & Rovčanin Adnan, 2020. "Nowcasting GDP of Bosnia and Herzegovina: A Comparison of Forecast Accuracy Models," South East European Journal of Economics and Business, Sciendo, vol. 15(2), pages 1-14, December.
  23. Luke Hartigan & Tom Rosewall, 2024. "Nowcasting Quarterly GDP Growth during the COVID-19 Crisis Using a Monthly Activity Indicator," Working Papers 2024-15, University of Sydney, School of Economics.
  24. Ghysels, Eric, 2016. "Macroeconomics and the reality of mixed frequency data," Journal of Econometrics, Elsevier, vol. 193(2), pages 294-314.
  25. Anna Norin, 2011. "Nowcasting of the Gross Regional Product," ERSA conference papers ersa10p768, European Regional Science Association.
  26. Galbraith, John W. & Tkacz, Greg, 2015. "Nowcasting GDP with electronic payments data," Statistics Paper Series 10, European Central Bank.
  27. Yun-Yeong Kim, 2016. "Dynamic Analyses Using VAR Model with Mixed Frequency Data through Observable Representation," Korean Economic Review, Korean Economic Association, vol. 32, pages 41-75.
IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.